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Setup

Download and install the CppSim Version 3 package (i.e., download and run the self-extracting file
named setup_cppsim3.exe) located at:

http://www.cppsim.com

Upon completion of the installation, you will see icons on the Windows desktop corresponding to the
PLL Design Assistant, CppSimView, and Sue2. Please read the “CppSim (Version 3) Primer”
document, which is also at the same web address, to become acquainted with CppSim and its various
components. You should also read the manual “PLL Design Using the PLL Design Assistant
Program”, which is located at http://www.cppsim.com, to obtain more information about the PLL
Design Assistant as it is briefly used in this document.

To run this tutorial, you will also need to download the file whsynth_example.tar.gz available at
http://www.cppsim.com, and place it in the Import_Export directory of CppSim (assumed to be
c:/CppSim/Import_Export). Once you do so, start up Sue2 by clicking on its icon, and then click on
Tools->Library Manager as shown in the figure below.

' SUE2: no_name (schematic) - this is a scratch cell: rename to desired cell name using ‘sav... E]@

Eile Window Edit Tools |We|cume to Suel (version 1.0 - see the COPYING file for details on copyrightylic

Libra 10
Cppsim Simulation
Create spice netlist N

In the CppSim Library Manager window that appears, click on the Import Library Tool button as
shown in the figure below.



' CppSim Library Manager

sn®

*
'.g:l::use

l...‘
Import Library Togk |

Export Library Toal ‘

CppSimkodules
devices
CDR_Examples
DLL_Exarnples
GMSK_Example
spice

Result:

'sue lib' Operations:  Add Library | Rermove Library| schermatic win, | icon wirn, | icon2 win, ‘
Library Operations: Create | REename | Dependencies | Delete |
bodule Operations: hove | Dependencies | Delete |

Module:  |overall_sd_synth_two_point_mod #

50_synth

50_synth_fast
50_synth_fast_sirmulink
s50_synth_tristate
50_synth_tristate_fast
s0_synth_tristate_int_sd_fast

MOTE: ¥OUWILL NEED TO RESTART SUEZ ONCE YOU ARE

FINISHED WWITH LIBRARY MANAGER OPERATIONS

In the Import CppSim Library window that appears, change the Destination Library to
WBSynth_Example, click on the Source File/Library labeled as whsynth_example.tar.gz, and
then press the Import button as shown in the figure below. Note that if wbsynth_example.tar.gz
does not appear as an option in the Source File/Library selection listbox, then you need to place this
file (downloaded from http:/www.cppsim.com) in the c:/CppSim/Import_Export directory.
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Resuli:

Once you have completed the above steps, restart Sue2 as directed in the above figure.

Introduction

This tutorial explores the design of a wideband fractional-N frequency synthesizer using the CppSim
design tool. Wideband synthesizers are very desirable in a variety of applications, including fast-
hopping local oscillator (LO) generation and direct-modulated transmitters. Up to now, fractional-N
synthesizer bandwidths have typically been limited to bandwidths below 100kHz because of the
impact of fractional-N dithering noise on the output phase noise spectrum. By introducing a new
circuit element, the mismatch compensated PFD/DAC [1], we are able to substantially reduce the
magnitude of fractional-N quantization noise, thereby making high bandwidth (> IMHz ) fractional-N
synthesis possible.

The synthesizer architecture is described in detail in [1, 2]. This tutorial will focus on simulation and
experimentation with relevant design variables. However, a brief explanation of the architectural
advantage of the synthesizer follows below.

For an introductory tutorial to fractional-N synthesis, we recommend first running the tutorial,
described in “Fractional-N Frequency Synthesizer Design Using The PLL Design Assistant and
CppSim Programs” available at



http://www.cppsim.com

[1] S. Meninger and M. Perrott, “A Fractional-N Frequency Synthesizer Architecture Utilizing a
Mismatch Compensated PFD/DAC Structure for Reduced Quantization-Induced Phase Noise” , IEEE
Trans. Circuits and Systems II, Nov 2003

[2] S. Meninger, “High Bandwidth, Low Noise Frequency Synthesis Techniques”, PhD Thesis,
Massachusetts Institute of Technology, May 2005

A. Quantization Noise Impact on Synthesizer Performance

Figure 1. depicts the architecture use by state-of-the-art A fractional-N synthesizers, the architecture
typically chosen in high performance applications. A digital ZA modulator is used to dither the divide
value between integer values such that, on average, a fractional divide value is produced. The
dithering process introduces quantization noise into the system, a result that is intuitive when we
consider that a fractional divide value is obtained by dithering between integer values. So while the
average divide value is fractional as desired, and results in zero average phase error detected by the
PFD circuitry, instantaneous errors are produced. These instantaneous errors represent the
quantization noise.

The A modulator dithering action results in a quantization noise profile that is shaped. In other
words, the low frequency component of the shaped quantization noise is suppressed relative to the
high frequency component. The shaped noise is filtered by the low pass filter response associated with
the synthesizer closed loop dynamics. The result is an undesirable noise-bandwidth tradeoff, where
more shaped quantization noise appears at the output as closed loop synthesizer bandwidth is
increased.
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Figure 1: XA Fractional-N Synthesizer

B. Wideband Synthesizer Architecture

The quantization noise-bandwidth tradeoff associated with XA fractional-N synthesis can be removed
if quantization noise can be reduced. In order to achieve noise reduction, we propose the architecture



depicted in Figure 2 [1, 3]. This topology uses a cancellation path to actively remove the quantization
noise, whereas a A synthesizer relies on the PLL dynamics to attenuate quantization noise.

Active noise cancellation is not a new concept. Phase interpolation based fractional-N synthesis
employs a cancellation DAC which attempts to actively cancel quantization noise at the charge-pump
output [4]. The main limitation of phase interpolation is due to the mismatch that exists between the
cancellation signal and noise signal. For more details, please see [2].

The key advantage of the proposed architecture is that the circuitry that injects quantization noise into
the loop (the PFD and charge-pump) is combined with the cancellation signal (a DAC) to create an
inherent gain match between the two signals [3]. We denote the overall hybrid structure as a
PFD/DAC to emphasize that the phase detection and noise cancellation are performed in the same
circuitry. As we will see through simulation, mismatches internal to the PFD/DAC limit performance
if left unchecked. By using dynamic element matching techniques, these mismatches can be converted
into broadband phase noise that is filtered by the PLL dynamics. The resulting mismatch compensated
PFD/DAC synthesizer is capable of dramatically reducing quantization induced phase noise, as
detailed in [1, 2].
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Figure 2: Wideband Fractional-N Synthesizer Architecture

[3] Y. Dufour, “Method and Apparatus for Performing Fractional Division Charge Compensation in a
Frequency Synthesizer”, US Patent No. 6,130,561 2000

[4] W. Egan, “Frequency Synthesis by Phase-lock”, Wiley Press, 2000



C. Qualitative Explanation of PFD/DAC Operation: The Charge Box
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Figure 3: The Charge-Box

Figure 3 presents a simple qualitative explanation of operation of the PFD/DAC. Shown in the figure
are outputs of a typical PFD and charge-pump configuration for both a classical fractional-N
synthesizer as well as a PFD/DAC synthesizer. The classical fractional-N synthesizer achieves an
average divide value that is fractional, as desired, but exhibits instantaneous phase errors on a period-
by-period basis.

Shown in the figure is the output of the charge-pump for one particular period where an instantaneous
error is produced. The error occurs because the fractional-N dithering process causes the divider phase
to vary over time, which changes the width if the negative charge-pump output (tsown) . The width of
the positive charge-pump output is determined by the reference, whose phase is unchanging in time,
and is therefore constant in time as well. The result is a net instantaneous charge imbalance, Qq # Q..
Again, we must emphasize that we are showing a single phase comparison. The classical fractional-N
synthesizer will achieve steady-state operation where the average error charge is zero, but, on a
period-by-period basis as we show in Figure 3, instantaneous errors are produced. These errors move
the VCO control voltage and result in spurs. The instantaneous errors in a fractional-N synthesizer are
related to the fractional divide value, and so the spurs occur at frequencies related to the fractional
portion of the divide value, and are denoted as fractional spurs.

YA fractional-N synthesis causes the errors to be randomized rather than periodic, and so the
instantaneous errors do not result in spurs, but rather result in shaped broadband noise. The shaped
noise results in the noise-bandwidth tradeoff already discussed.

The PFD/DAC approach actively cancels the quantization noise by creating a charge-box which
compensates for the variation in tgown by controlling the current in a one-VCO period wide window.
The charge-box is created by using two divider signals in the PFD logic (Divl1 is delayed by one VCO
period from Div0, as indicated in the figure). The net result is that a constant amount of negative
charge is delivered every period, and instantaneous errors are removed! A one-VCO period wide
window is used, because the variation of t4own i1s referenced to a single VCO period [1]. The
magnitude of current is controlled by the divider control XA residue, since it contains information
about the magnitude of the quantization error [4].



There are two key observations to make about the PFD/DAC technique. The first is that the degree to
which the quantization error is removed is related to the resolution of the DAC current. The second
observation is that, as the DAC current varies period-to-period to compensate for variations in t4own,
there is some information about the fractional divide value in the varying shape of the negative current
pulse, so there will be some small amount of fractional spur information present. We will show how
employing a sample-and-hold can eliminate this spurious content in the PFD/DAC output.

Design Goals for an Example PED/DAC Synthesizer

As a target application for the PFD/DAC synthesizer, we set the following specifications:
e PLL specifications
0 1MHz closed loop synthesizer bandwidth
0 Order: 2 (We want a simple implementation)
o0 Filter Shape: Butterworth

0 Parasitic Pole at 2.5MHz (helps to attenuate high frequency noise. This is a standard
noise reduction “trick” used in synthesizer design)

0 Type: 2 with fz/fo=1/9

0 3.6GHz output frequency

0 50MHz reference frequency
e Noise Specifications

0 No worse than -100dBc/Hz in-band noise. We begin assuming a -110 dBc/Hz in-band
phase noise level. (In-band noise is noise within the loop bandwidth)

0 -155dBc/Hz VCO phase noise at 20MHz offset from the carrier

0 Minimal residual spurs present in the output. For practical purposes, we will aim for
spurs no larger than -80dBc/Hz

These design goals would allow the synthesizer to be used as a direct modulated GSM transmitter if
the VCO output is divided by four. Having a 3.6GHz output frequency results in a large degree of
quantization noise cancellation relative to 900MHz, because the VCO period is four times smaller at
900MHz than at 3.6GHz.

Below is the GSM 900MHz phase noise mask specifications, as well as the equivalent noise
performance required by a 3.6GHz signal that is divided down to generate the 900MHz signal,
assuming a noiseless division is performed.

100 200 [250 [400 |600 [1.8 [ 3.0 | 6.0 | 10 | 20




kHz kHz kHz kHz kHz MHz MHz MHz MHz MHz
900 -52.3 -82.8 -85.8 -112.8 | -112.8 | -121 -123 -129 -150 -162
MHz dBc/Hz | dBc/Hz | dBc/Hz | dBc/Hz | dBc/Hz | dBc/Hz | dBe/Hz | dBc/Hz | dBc/Hz | dBc/Hz
3.6 -40.3 -70.8 -73.8 -100.8 | -100.8 | -109 -111 -117 -138 -150
GHz dBc/Hz | dBc/Hz | dBc/Hz | dBe/Hz | dBc/Hz | dBc/Hz | dBe/Hz | dBe/Hz | dBe/Hz | dBc/Hz

Performing Basic Noise Analysis Using the PLL Design Assistant

Open the PLL Design Assitant tool and put in the above parameter values. Click on the Noise Plot
radio button to see the estimated phase noise of the synthesizer. Now set the axis values of the noise

plot to:

e Noise axis limits: 1e4 1e8 -170 -60

As a check to your work, the figures below illustrate what the PLL Design Assistant and resulting

phase noise plot should look like.
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Output Phase Noise of Synthesizer
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e Note that there is something missing from the noise plot. Namely, the fractional-N
quantization noise! To see the impact of the quantization noise, we modify the PLL Design

Assistant window. We first look at the performance of a 2" order TA synthesizer with a IMHz
bandwidth that otherwise meets all of the specifications.

e In the PLL Design Assitant window, enter a 2" order noise transfer function into the S-D
noise box by first clicking the “On” button and entering [1 -2 1] into the parameter box, as

depicted below.
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Written by Michael Perrott (http:fiww-mitl mit.edu/”perrott)

The resulting noise plot should appear as below.
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Output Phase Noise of Synthesizer
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e Note that the quantization noise associated with the 2" order TA synthesizer ruins noise
performance! The standard way to combat this noise would be to reduce the synthesizer
bandwidth. You can experiment with this using the PLL Design Assistant. We will not do so
here because reducing bandwidth violates our stated goal of achieving 1 MHz bandwidth.

e Now change the quantization noise function so that it corresponds to a 7-bit PFD/DAC
synthesizer. This is accomplished by dividing the noise transfer function by 2”7, as shown
below:
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|
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type ® i ® 2 paris. zero ‘ Hz ﬂ
— SO 1 ¢2 ﬂ 0-2112°7 W
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Written by Michael Perratt (http:ihwww-rntl.mit.edu/~perrott)

e The resulting phase noise plot demonstrates that, if the quantization noise can be reduced
by 42dB using a 7-bit PFD/DAC, it is effectively removed from consideration when
calculating the output noise. The plot below shows this improved phase noise performance.
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Having established the desired noise performance of the example PFD/DAC synthesizer, we move on

to behavioral simulation using CppSim.

Performing Basic Operations within Sue2 and CppSimView

In this section, the user will be guided through basic tasks such as opening the wideband synthesizer

example within the Sue2 schematic editor and running CppSim simulations.

A. Opening Sue2 Schematics

e Click on the Sue2 icon to start Sue2, and then select the WBSynth_Example library from
the schematic listbox. The schematic listbox should now look as follows:

T

WSue2/SueliniWBSynth_Example

wh_buff_model
wh_buff_tst
wh_chp_filter
whb_chp_ro
wh_cutoff

wh_dacdel
wh_dacdel_latch
wh_delay
wh_div_by_2_or_4
wh_gmsk_modulator
wh_int_reset
wh_integrate_and_dump
wh_Ifsr

wh_limiter
wh_pfddac

ik nfddac?

S

e Scroll down and click on the wb_synth schematic. The baseline behavioral model of the

wideband synthesizer is shown below:

12
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There are several key blocks in the system:

0 wb_pfddac: This is the mismatch compensated PFD/DAC structure used to cancel

the fractional-N quantization noise

o wb_sd_modulator_bitwise: This is a 1* order XA modulator block. It is a bitwise

model, meaning that it operates in the same manner as a circuit level
implementation. A first bitwise modulator is used to control the divider. A second
bitwise modulator operates on the least significant bits of the first modulator, which
represent the quantization error associated with the first modulator. The output of
the second modulator is used to control the DAC function associated with the
PFD/DAC.

wb_sh_and_hold: This is a sample-and-hold block used to sample the output of
the PFD/DAC before it is processed by the loop filter. As described in [2], the
sample-and-hold helps remove residual spurs at the fractional and reference
frequencies that would otherwise be present in the output spectrum.

accum_and_dump: This block is used to decimate the output data so that very
long simulations can be quickly plotted.

The key signals present in the system are:

13



0 ichptot: The PFD/DAC output. We will see how controlling charge within a well-
defined time window cancels quantization noise.

o fregfilt: The filtered control voltage used to control the VCO. This signal will be
used to calculate and plot the synthesizer output spectrum.

0 residue: The residue of the divider control SD modulator that contains information
about the quantization noise.

e Select the wb_pfddac icon within the wb_synth schematic, and then press e to descend
into it. You will see the schematic shown below. Key signals within this block include:

0 phi0, phil: The mismatch compensated timing signals used to control the noise
cancellation window.

0 idac: The PFD/DAC output current.

- BX

Eille Window Edit Tools

e The final block we will explore before beginning simulation is the timing mismatch
compensation block, wb_phaseswap. Select the wb_phaseswap icon and press € to
descend into it. You will see the schematic depicted below.

14



- BX

Eile Window Edit Tools

e This block is used to transform a timing mismatch between the two divider signals used to
create the charge-box from a gain mismatch into a broadband noise source. We will
explore its operation in simulation to follow. Note that any mismatch between phase paths
mux0 and mux1 are removed by flip-flops xi4 and xi5. By swapping the paths for mux0
and mux1, we can match the average delay seen by each. In this way, we can create a delay
that is one-VCO period wide for use in creating the charge-box.

e Press Ctrl-e twice to return to the wb_synth schematic.

B. Running the CppSim Simulation

e In the Sue2 schematic window, click on the Tools button on the menubar and select
CppSim Simulation from the drop down menu. The CppSim Run Menu will open in a
new window, as shown below — notice that the banner indicates it is currently
synchronized to the wb_synth cellview.

15



# CppSim Run Menu --- cell: wb_synth, library: WBSynth_Example

Close | Kill Run | Synchronize | Edit Sim File | Netlist Only | Compile/Run

Sim Mode:  CppSim  —t
Sim File: None —

Result: === el wb_synth (Library: WBSynth_Example) ===

CppSim netlisting of cell 'wb_synth' completed with no errors

Hierarchy File: None

— Need to Create a Sim File By Pushing 'Edit Sim File' Button —

e Click on the Edit Sim File button. An emacs window should appear, displaying the
contents of the simulation parameters file (test.par). It indicates that the number of
simulation steps, NUM_sim_steps, is set to 8e¢6 and the timestep, TS, is set to 1/25¢9. You
can close the emacs window if you like.

e Click on the Compile/Run button to run the simulation.

e  When the simulation finishes, start the CppSim viewer by double clicking on the
CppSimView icon on your desktop, or by launching from the Windows Start button.
Once CppSimView loads, Click on the No Output File radio button and select test.tr0 as
the output file as shown below.

) CppSimView --- Library: WBSynth_Example, Cell: wb_synth

Save to .eps Fle Saveto .fig Fle Save to Clipboard Zoom

Synch Load
Load and Replot

Plot

Back Forward
Create Matlab Code

" testpar ® testird " No Nodes  plotsigr..} " messages

:

------- EppSiITIZ C++ Behavioral Simulation ------ Wiritten by Michael Perrott (http St mit edud™perrott)
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e Click on the No Nodes radio button to load in the simulated signals. CppSimView should
now appear as shown below.

+) CppSimView --- Library: WBSynth_Example, Cell: wb_synth

Save to .eps Fle Saveto .fig Fle Save to Clipboard Zoom

" testpar  testird  plotsigl.. )  messages

e e
ref
div
win
sineout
fregout
itot

Load and Replot

i

Plot

Back Farward
Cregte Matiab Code

------- CppSim; C++ Behavioral Simulation ------- Written by Michael Perrott (Htp fhwww-rmtl mit edu/~perrott)

Plotting Time Domain Results

Given the above simulation, we will now examine some of the key signals in the system during
normal operation.

A. PFD/DAC Output and VCO control Voltage

e Inthe CppSimView window, double-click on signals vin and itot. You should see the
waveforms shown below.

<} Plot for CppSimView -—- Library: WBSynth_Example, Cell: wb_synth E.E

CppSim Simulated Signals for Cell: wi Lib: WBSynth_Example, Sim: test par

10 15 20
Time (microseconds)
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We see that, after some simulation startup conditions, the VCO control voltage settles to a
steady-state value. To observe how “steady” this value is, and to get a better look at the
PFD/DAC output waveforms we will zoom in on the waveforms.

In the CppSimView window, click on Zoom (immediately above the test.par radio button).
The waveform window will now look as below.

<) Plot for CppSimView --- Library: WBSynth_Example, Cell: wb_synth
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Click on the Zoom button in the waveform window, and then zoom in several times in the
15us to 20us range until you observe two successive periods of operation as shown below:
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e Note that the magnitude of itot is changing within a one-VCO period window, as
highlighted in the plot. This indicates the PFD/DAC operates as expected. The VCO
control voltage is also changing over time, which this is due to the random noise sources
present in the simulation.

Plotting Frequency Domain Results

e We will now observe the synthesizer output spectrum.
e First, click on the test.trO radio button, and select test_noise.tr0 from the file list.
e Then click the No Nodes radio button.

e Next, Click on the plotsig(...) radio button and select
plot_pll_phasenoise(x,f_low,f_high,’nodes’) from the list.

e Next, click the nodes radio button.

o [Edit the plot_pll phasenoise command so that f low=1e4, f high=1e8, and
‘nodes’=freqfilt. The result should appear as below.
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e We observe that the spectrum appears to roughly match the calculated values using the
PLL Design Assistant. One difference are the spurs that appear in the behavioral model.
One spur is visible at the reference frequency, at a magnitude of -49dBc. We read the spur
magnitude from the right y-axis scale in the plot. This spur will have to be reduced to meet
our desired specification of no spurs greater than -80dBc.

One thing we note from the plot is that the phase noise spectrum appears very noisy. This is because
of the length of the simulation run. In order to generate a less noisy output spectrum, we can run a

longer simulation.

e In the CppSim Run Menu, click on the Edit Sim File button. (This assumes the simulation
file has been closed from earlier in the tutorial. If it is already open, skip this step.)

e Change the num_sim_steps variable to 50e6

e Save the file by typing Ctrl-x Ctrl-s. You can then close the simulation file if you like.
20



e Inthe CppSim Run Menu, click the Compile/Run button.

e Once the simulation is complete, click on the Load and Replot button in the CppSimView
Window. The resulting plot is shown below. We see that increasing the simulation length
reduces the “noisy-ness” of the phase noise calculation. Comparing the simulation result
with our calculated result reveals that the two have excellent agreement. For simulations
from now on, we will use shorter simulation runs to reduce simulation time.

e We note from the longer simulation that there is also a spur occurring at 15.6535 MHz,
which corresponds to the fundamental fractional spur frequency. (The nominal divide
value set in the sim file is 71.31307, which results in a fundamental spur at
0.31307*50MHz = 15.6535MHz.) This spur occurs due to the changing PFD/DAC output
wave-shape, as described previously, and is very small, below -100dBc in magnitude. A
compensation scheme for this spur will be simulated later in this tutorial.
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Exploring Non-ldealities within the PED/DAC

In this section, we explore non-idealities associated with the PFD/DAC, and observe their impact on
overall noise performance. The non-ideal charge-box is compared to an ideal charge-box in the figure
below.
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The two primary sources of mismatch within the PFD/DAC are magnitude mismatch between the unit
element current sources and timing mismatch between the two phase paths that generate the charge-
box.

A. PFD/DAC Unit Element Mismatch

As detailed in [1, 2], the PFD/DAC is comprised of 25 unit elements, where B is the number of bits in
the PFD/DAC. Mismatch between the unit elements result in a gain mismatch between the
quantization noise signal and cancellation signal. We explore the impact of this mismatch in the
behavioral model.

e If the simulation control file is not open, open it by clicking the Edit Sim File button in the
CppSim Run Menu.

e Turn on unit element mismatch by changing the mismatch_en control parameter from -1.0
(disabled) to 1.0 (enabled).

e The mismatch is set using a Gaussian profile that has a use specified standard deviation. The
standard deviation is set by the mismatch_stddev control parameter. Leave it set to the default
value of 0.05, which corresponds to a standard deviation of 5% mismatch between the unit
elements, a conservative value.

e Change the num_sim_steps parameter to 10e6 to reduce the overall simulation runtime. (If
you want to return later to run the sim again with more points to get a “cleaner” phase noise
plot, you are encouraged to do so. However, your phase noise plot won’t match the tutorial
results exactly because of the difference in simulation time.)

e Save the changes to the simulation control file.

e Click the Compile/Run button in the CppSim Run Menu to start the simulation.

e Load in the simulation results and plot the output phase noise plot following the same
procedure previously described in this tutorial. You should see the following phase noise plot:
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We see that unit element mismatch appears to have minimal impact on phase noise performance. Is
this completely accurate? To check, we will re-run the simulation, but “turn off” other noise sources in
the system to isolate the mismatch noise. To do this, we edit the schematic view of wb_synth.

e Disconnect the charge-pump noise source, instance Xi3, from the summing junction, instance
xi12, and connect the 0-valued constant source, Xil4, to the summing junction input, as shown
below. This removes the charge-pump noise from affecting the PLL output.

- OX]

Eile  Window Edit Tools
~

e Change the value of the VCO noise at 20MHz from -155dBc/Hz to -1550dBc/Hz so that it is,
effectively, out of the picture.
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e Run the simulation by clicking the Run CppSim button in the CppSimView window.

e Plot the output phase noise, and observe the plot, shown below.
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This simulation result shows that unit element mismatch results in a significant spurious component to
the remaining quantization noise profile. Depending on the magnitude of unit element mismatch and
particular divide value, it is possible that these spurs will be significant, and adversely affect
synthesizer performance. The largest spur shown in the plot above is at approximately -64dBc, which
is outside our desired specification. This simulation reveals that the ability to selectively turn off noise
sources is a useful advantage to behavioral simulation because it allows use to examine noise sources
individually.

To combat unit element mismatch, the PFD/DAC uses data weighted averaging (DWA), a technique
widely used by XA DACs, to randomize selection of the unit elements. In order to see how this
dynamic element matching technique improves performance, we run another simulation with it
enabled.

e In the simulation control file, enable dynamic element matching of the PFD/DAC unit
elements by changing the dwaen parameter from -1.0 (disabled) to 1.0 (enabled).

e Save your changes to the control file.
¢ Run the simulation by clicking the Run CppSim button in the CppSimView window.

¢ Plot the phase noise profile. You should obtain the plot shown below.
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Note that the dynamic element matching technique not only eliminated the spurs created by unit
element mismatch, but also results in a shaped mismatch noise profile. This is beneficial in cases
where the mismatch noise is significant relative to the other low frequency noise sources in the
system, because the shaped nature provides extra low frequency margins. We also observe that the
residual fractional spur at 15.6535MHz is still present, as well as some spurs at harmonics of
15.6535MHz. However, these spurs occur at very small magnitudes, as all are <-100dBc. One final
thing to note is that the low frequency deviation in the noise plot occurring below 100kHz is an
artifact due to the fact that the quantization noise in that range is very small.

B. Timing Mismatch in the PFD/DAC

As already mentioned, any timing mismatch between the two phase paths that generate the charge-box
will adversely affect PFD/DAC performance. In this section, we will add timing mismatch to the
simulation and observe its impact on overall synthesizer noise performance. We will leave the unit
element mismatch as is, and turn on timing mismatch to see how this added non-ideality affects
overall performance.

e In the simulation control file, change the tdel_pfd_resid parameter from 0.0e12 to 5e-12. This
changes the value of the timing mismatch between the phase paths from zero to 5ps.

e Save the changes to the simulation file.
¢ Run the simulation by clicking the Compile/Run button in the CppSim Run Menu.

e Plot the phase noise profile. You should obtain the plot shown below.
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We see that timing mismatch also has a very adverse impact on overall synthesizer noise performance.
Fractional spurs up to -60dBc are observed.

In order to combat timing mismatch, we enable the timing mismatch compensation block, which
dynamically matches the two phase paths in the PFD/DAC by swapping them back-and-forth over
time. The swap function is controlled by a linear feedback shift register (LFSR) random number
generator that causes the swap signal to have a white noise profile with an average duty cycle = 0.5.

e In the simulation control file, change the en_swap parameter from -1.0 (disabled) to 1.0
(enabled).

e Save the changes to the simulation file.
e Run the simulation by clicking the Compile/Run button in the CppSim Run Menu window.

¢ Plot the phase noise profile. You should obtain the plot shown below.
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We see that the timing mismatch compensation converts the spurious energy caused by timing
mismatch into a broadband noise source. Since the compensated timing mismatch noise has a white
low frequency profile, its magnitude must be reduced as much as possible so that low frequency noise
performance does not suffer. In the case of the example synthesizer being simulated, the -107dBc/Hz
low frequency noise resulting from Sps timing mismatch is worse than the -110dBc/Hz low frequency
noise performance originally assumed in the simulation! The -107dBc/Hz noise level is below the
desired specification of -100dBc/Hz, however, and so is acceptable.

C. Shape Mismatch and the Sample-and-Hold function

The final non-ideality we examine is the shape of the PFD/DAC output and its impact on output noise.
As has been discussed, the PFD/DAC output waveform contains information in it about the fractional
divide value. If the output is presented directly to the loop filter, then some residual fractional spurs
will appear in the output spectrum. To isolate the loop filter from the PFD/DAC output a sample-and-
hold is used. By sampling the PFD/DAC output after it completes operation as depicted in the figure
below, its shape is ignored. An additional benefit is that spurious energy occurring at the reference
frequency associated with the phase detection process is also eliminated.
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In the figure, the charge produced by the PFD/DAC is represented by a capacitor voltage, V.. Note
that the slope of the V, voltage changes from period to period within the time window defined by the
charge-box. This is because the PFD/DAC varies the current in that window. However, the net voltage
excursion once the PFD/DAC completes operation is zero, because no net charge is delivered. If the
integrated charge is sampled after the positive current pulse completes, the result is Vcb, a voltage that
contains no spurious energy, but rather only changes due to any random variation of the PFD/DAC
output currents due to thermal noise.

e In the simulation control file, change the en_s_and_h parameter from -1.0 (disabled) to
1.0 (enabled).

e Save the changes to the simulation file.
e Run the simulation by clicking the Compile/Run button in the CppSim Run Menu.

e Plot the phase noise profile. You should obtain the plot shown below.
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We see that the sample-and-hold has removed the residual fractional spurs as well as the spur at the
reference frequency! Of course, a practical sample-and-hold implementation will have some error
associated with it, but the behavioral simulation indicates that this is a worthwhile technique to
pursue.

To examine the final synthesizer performance with all noise sources accounted for, we edit the
schematic once more and re-run the simulation.

e Reconnect the charge-pump noise source by disconnecting Xil4 from the adder, xil2, and
reconnecting Xi3 to the adder. This adds the charge-pump noise back into the simulation.
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e Change the VCO noise at 20MHz from -1550dBc/Hz back to -155dBc/Hz. This adds the
VCO noise back into the simulation.

e Save the changes to the simulation file.
e Run the simulation by clicking the Compile/Run button in the CppSim Run Menu.

e Plot the phase noise profile. You should obtain the plot shown below.
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The overall phase noise performance of the synthesizer as shown in the phase noise plot is very good.
It meets the equivalent of the GSM spectral mask at 3.6GHz across all frequencies, and meets the
stated spurious goal.

Directly Modulating the PED/DAC Synthesizer

In this section, we look at utilizing the PFD/DAC synthesizer as a direct modulated GMSK
transmitter. For an explanation of GMSK modulation, see the tutorial “Behavioral Simulation of a
Basic GMSK Transceiver using the CppSim Program” available at

http://www-mtl.mit.edu/researcheroups/perrottegroup/tools.html

The schematic for the PFD/DAC synthesizer based transmitter is named wb_synth_overall_system.

e Open the schematic by clicking on the wb_synth_overall_system schematic name in the
schematic listbox. The schematic is as shown below.
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The schematic contains the wb_synth block as well as several other blocks used by the transmitter.

wb_synth_modulator: generates a random data sequence that is properly GMSK filtered.
It takes as input several values:

h = modulation depth. For GMSK h = 0.5. The VCO output is set to be 3.6GHz for
reasons of maximizing quantization noise suppression. However, a GMSK
transmission system such as a GSM transmitter requires outputs at 900MHz. There
is also a GSM standard that operates at 1.8GHz, both of which can be derived from
the 3.6GHz VCO output. Therefore, we ultimately take the transmitter output from
the band select divider, wb_div_by 2 or_4. To account for the division, we
multiply h by 2 or 4, depending on whether we desire a 900MHz band or 1.8GHz
band output.

bt = modulation bandwidth. This is set to 0.3 for GMSK
data_period = number of reference clock cycles per data bit. We approximate the
GSM data rate, which uses a 270kb/s data rate, with 271.739b/s data, since it

results in a whole number for the data period, simplifying filter design.

mod_enable: Enables modulation if = 1.

wb_div_by 2 or_4: divides the synthesizer output by 2 or 4 depending on the desired
output band. Set sel_div4 to 1 for divide-by-4, or 0 for divide-by-2.
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gmsk_iq_receiver: coherent gmsk demodulator.

vco_quadrature: the quadrature VCO used by the coherent demodulator. It’s key
parameter is:

0 phase_adj: This is the intial offset in the quadrature VCO that accounts for the
delay through the PFD/DAC synthesizer. It will have to be changed if you
experiment with different data rates or output frequencies.

The key signals present in the system are

ifilt, gfilt: the filtered, demodulated I and Q data channels.

Having described the system architecture, we run a modulated simulation as follows.

Synchronize the CppSim Run Menu to the schematic by clicking the Synchronize button

Open the simulation file by clicking on the Edit Sim File button. Change the
num_sim_steps parameter to 20e6

Change the end_time parameter associated with the test_eye output from 200e-6 to 400e-6
Save your changes to the simulation control file.

Run the simulation by clicking on the Compile/Run button

We will now examine the demodulated eyes detected by the coherent receiver.

Synchronize CppSimView to the schematic by clicking on the Synch button.
Click on the No Output File button to see a listing of the output files
Select the test_eye.tr0 file and click on the Load button
Modify the data period in the eyesig plot command so that it reads,
0 eyesig(x,4/271739,0e-6, ‘ifilt;gfilt’)

Click the Plot button to plot the demodulated eyes. The CppSimView window should look
as follows:
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The demodulated eyes should look as follows:
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We see that the eyes are wide open. We can also examine the modulated output spectrum.
e Click the test_eye.tr0 radio button and select test_noise.tr0 from the file list.

e Click the No Nodes button to load in the signals.

e Click on the plotsig(...) button, and select the modulated spectrum plotting function
plot_pll_mod_spectrum(...). Change the noise plot bandwidth to 2e6, and specify the node
fregfilt. The CppSimView window should look as follows:
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e Click the Plot button. The resulting phase noise profile should appear as follows:
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We observe the modulated spectrum follows the expected GMSK profile. To obtain a cleaner
spectrum, you can run a longer simulation and repeat the plotting process. 100e6 points is a good
length to try.

Conclusion

In this document, we explored the mismatch compensated PFD/DAC synthesizer, an architecture
capable of simultaneously achieving high bandwidth and low phase noise. By examining the impact of
mismatch sources, we are able to validate the compensation schemes employed to reduce the impact
of mismatch noise on overall synthesizer performance.

We have also demonstrated the use of the PFD/DAC synthesizer as a direct modulated GMSK
transmitter. The user is encouraged to explore changing the data rate and output band select divider
value to explore transmitter performance for various data rates. Additionally, by changing the relevant
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control parameters in the wb_synth simulation, the user can explore different values of mismatch to
observe the impact on synthesizer performance.

34



