
Behavioral Simulation of a 4th-Order CT Delta-Sigma
ADC with VCO-Based Integrator and Quantizer

Matt Park

http://www.cppsim.com

November, 2008

Copyright © 2008 by Matt Park
All rights reserved.

Table of Contents:

Setup ... 2
Introduction... 4

A. Benefits of a VCO-based ADC Architecture... 4
B. Early VCO-based ADC Architectures ... 5
C. Improving Linearity with a Voltage-to-Phase VCO-based Integrator and Quantizer 7

Preliminaries ... 8
A. Opening Sue2 Schematic ... 9
B. Running CppSim Simulations.. 10

Plotting Time-Domain Results ... 11
A. Output Signal Plots .. 12

Plotting Frequency Domain Results ... 13
A. Triggering Output Data Storage... 13
B. Plotting the FFT ... 14

Proposed 4th Order CT ∆Σ ADC... 16
Examining Non-Idealities ... 19

A. Amplifier Non-Linearity and Finite Gain-Bandwidth ... 19
B. Finite DAC Impedance... 21
C. Device Noise .. 23
D. VCO Unit Element Mismatch.. 24
E. Main NRZ DAC Unit Element Mismatch.. 25
F. Main NRZ DAC Inter-Symbol Interference (ISI) .. 27
G. Minor-Loop NRZ and RZ DAC Unit-Element Mismatch and ISI 29
H. Clock Jitter ... 30
I. Summary.. 32

Conclusion .. 34
References... 34

Setup

Download and install the CppSim Version 3 package (i.e., download and run the self-
extracting file named setup_cppsim3.exe) located at:

http://www.cppsim.com

Upon completion of the installation, you will see icons on the Windows desktop
corresponding to the PLL Design Assistant, CppSimView, and Sue2. Please read the
“CppSim (Version 3) Primer” document, which is also at the same web address, to
become acquainted with CppSim and its various components. You should also read the
manual “PLL Design Using the PLL Design Assistant Program”, which is located at
http://www.cppsim.com, to obtain more information about the PLL Design Assistant as it
is briefly used in this document.

To run this tutorial, you will also need to download the file vco_ctsd_example.tar.gz
available at http://www.cppsim.com, and place it in the Import_Export directory of
CppSim (assumed to be c:/CppSim/Import_Export). Once you do so, start up Sue2 by
clicking on its icon, and then click on Tools->Library Manager as shown in the figure
below.

In the CppSim Library Manager window that appears, click on the Import Library
Tool button as shown in the figure below.

In the Import CppSim Library window that appears, change the Destination Library
to vco_ctsd_example, click on the Source File/Library labeled as
vco_ctsd_example.tar.gz, and then press the Import button as shown in the figure
below. Note that if vco_ctsd_example.tar.gz does not appear as an option in the Source
File/Library selection listbox, then you need to place this file (downloaded from
http://www.cppsim.com) in the c:/CppSim/Import_Export directory.

Once you have completed the above steps, restart Sue2 as directed in the above figure.

Introduction

This tutorial explores the design of a 4th order continuous-time (CT) ∆Σ ADC with a
voltage controlled oscillator (VCO) based integrator and quantizer using the CppSim
behavioral simulation tool. VCO based analog-to-digital converters (ADC’s) have
recently become a topic of great interest in the mixed-signal community. In addition to
having a very digital structure that benefits from technology scaling, the VCO presents a
host of unique signal processing properties that are especially attractive in the design of
oversampling converters.

However, certain non-idealities—namely, non-linearity in the VCO’s voltage-to-
frequency translation gain (Kv)—have limited the resolution of the VCO-based ADC to
less than 8 effective number of bits (ENOB), pigeon-holing the architecture to niche low-
power applications where such resolution is adequate [3, 4]. Indeed, only recently has the
mixed-signal community demonstrated that feedback techniques could linearize the
VCO-based ADC further, with the work in [5] demonstrating an SNDR of 67 dB in a 20
MHz bandwidth.

To that end, this tutorial will introduce a new 4th order CT ∆Σ ADC architecture that
leverages a VCO-based quantizer to achieve approximately 13 ENOB (78 dB SNDR) in a
20 MHz input signal bandwidth. An in-depth discussion of the ADC architecture, its
implementation, and measured results can be found in [1, 2]. This tutorial will focus on
simulation and experimentation with relevant design variables using CppSim. However, a
brief explanation of the architectural advantage of this VCO-based ADC implementation
follows below.

A. Benefits of a VCO-based ADC Architecture

Figure 1: key VCO characteristics and relationships.

While a VCO has a variety of unusual and interesting properties, it has two traits that are
especially attractive and relevant in the design of CT ∆Σ ADC’s. First, the VCO behaves
as a CT voltage-to-phase integrator. As shown in Figure 1, the instantaneous VCO output
frequency Fout(t) is proportional to the applied input voltage Vtune(t) according to the
voltage-to-frequency gain Kv [Hz/V]. The resulting VCO output phase Φout(t) is
proportional to the time integral of the applied input voltage. Note that as long as the
VCO oscillates, the VCO output phase will accumulate endlessly, even for a DC input.
This implies that the VCO behaves as a CT integrator with infinite DC gain.

Vtune

Clk

DFF Array

Output Range

(VDD-GND)

Figure 2: multibit quantization with a ring oscillator structure.

A second property of interest is the digital nature of the VCO outputs. Note that while the
VCO output phase and frequency are continuously varying, the VCO output itself toggles
between two discrete levels, VDD and GND, much like a CMOS digital gate (see Figure 2).
Multi-phase (or equivalently, multi-bit) quantization can be accomplished by sampling
the output phases of a ring oscillator with an array of D-flip-flops. Note that since the
VCO phases are full-swing logic signals, the quantizer is robust to voltage offsets in the
flip-flops. At the same time, only one VCO edge transitions at a given sampling instant,
while the rest of the VCO phases saturate to either VDD or GND. Consequently, the
quantizer not only is less prone to generate metastable outputs, but also has guaranteed
monotonicity without requiring any calibration.

B. Early VCO-based ADC Architectures

Early VCO-based ADC’s were very simple, comprising a ring-VCO, counters, and
sampling registers (see Figure 3). As the analog input signal modulates the VCO
frequency via the tuning node, the counter continuously accumulates the number of
transitioning edges during the sample period. At the end of the period, the resulting count
is sampled by a register, the counter reset to zero, and the process repeated. As can be
seen from the figure, the sampled count is proportional to the oscillation frequency of the
VCO, and therefore the input signal level. Therefore, this ADC will henceforth be
referred to as the voltage-to-frequency VCO-based ADC.

Figure 3: multiple-phase counting ADC architecture.

Note that under certain circumstances, the counters in the VCO-based ADC of Figure 3
can be eliminated [3]. In particular, when the sample rate is chosen such that the VCO
elements do not transition more than once in a given sample period, the counters can be
replaced with registers and XOR gates (see Figure 4). These gates process the sampled
VCO phases, and generate a thermometer code that, when summed, is equivalent to the
output count of the counter-based VCO ADC. This equivalence is possible because the
register-XOR combination effectively performs a first-order difference, or discrete-time
differentiation, of the sampled/quantized VCO phases. Since frequency is the derivative
of phase, the resulting outputs will be proportional to the input voltage applied to the
VCO control node. Note that the reset in the counter-based VCO ADC of Figure 3 also
performed a first order difference by canceling out the previous quantized phase.

Figure 4: a voltage-to-frequency VCO-based ADC that eliminates the counter by
oversampling the VCO output phase.

Figure 5: analytical model of the voltage-to-frequency VCO-based ADC, and the
equivalent frequency domain block diagram.

A general model for the voltage-to-frequency VCO-based ADC is shown in the top-half
of Figure 5. A subtle benefit of this voltage-to-frequency ADC is that the quantization
noise will be first-order noise shaped due to the post-quantization differentiation, as
illustrated in Figure 5. Furthermore, the architecture precludes the feedback DAC needed
in a classical first-order ∆Σ ADC, greatly simplifying design. Unfortunately, the non-
linearity of the VCO’s voltage-to-frequency conversion gain, Kv, severely limits the
resolution of this open loop architecture.

C. Improving Linearity with a Voltage-to-Phase VCO-based Integrator and
Quantizer

In all prior voltage-to-frequency VCO-based ADC architectures, the VCO output
frequency is the desired output variable due to its proportional relationship with the input
signal. Therefore, to exercise the full DR of the VCO quantizer, the input signal to the
VCO must span the entire non-linear transfer characteristic, and incur harmonic distortion
(see Figure 6(a)). However, if it were possible to leverage the VCO output phase, then it
would not be necessary to span this non-linear transfer characteristic. Since the VCO
behaves as an ideal voltage-to-phase integrator and typically has a large Kv, small
perturbations at the tuning node on the order of tens of mV are sufficient to shift the VCO
phase by a substantial amount.

Of course, it is not feasible to use an open-loop integrator with infinite DC gain since
frequency offsets, drifts, and temperature variations will cause the VCO output phase to
saturate the phase detector that follows. At the same time, the input signal level is
restricted to being no more than a few tens of mV, which is a severe restriction on the
dynamic range of the ADC. Negative feedback offers a simple solution to this problem,
as illustrated in Figure 6(b). Here, the VCO phase is sampled and quantized by registers,

and compared to a reference phase via a phase detector. The output of the detector then
drives a multibit DAC, which subtracts the previously quantized value from the input
signal applied to the VCO. The resulting residue is then applied to the control node of the
VCO, and integrated during the next cycle. Note that the feedback loop shown in Figure
6(b) is in fact a first-order CT ∆Σ ADC loop, and will therefore first-order shape the
VCO quantization noise.

N N N

(a)

NN N

(b)

Figure 6: (a) prior voltage-to-frequency VCO-based ADC, and (b) proposed voltage-to-
phase VCO-based ADC

Preliminaries

We will now investigate the voltage-to-frequency and the voltage-to-phase VCO-based
ADC’s of Figures 5(a) and 5(b) using CppSim. In doing so, we will explain how to plot

transient simulation data using CppSimView, and how to generate FFT’s of the ADC
output data streams using MATLAB.

A. Opening Sue2 Schematic

Click on the Sue2 icon to start Sue2, and then select the vco_ctsd_example library from
the schematic listbox. The schematic listbox should now look as follows:

Select the test_vco_quantizer cell from the above schematic listbox. The sue2
schematic window should now appear as shown below. Key signals for this schematic
include:

 freq_out: the quantized output frequency from the VCO voltage-to-frequency
 VCO-based ADC

 phase_out: the quantized output phase from the VCO voltage-to-phase VCO-
 based ADC

The other labeled signals in the schematic window are self explanatory. Note that both
the voltage-to-frequency and voltage-to-phase VCO-based ADC’s make use of the
vco_integrator_quantizer module, which is a realization of the counter-less VCO-based
voltage-to-frequency ADC of Figure 5 written in C++ code. Consequently, note that the
VCO nominal oscillation frequency is 250 MHz, its Kv is 250 MHz/V, and the ADC
clock frequency is 1 GHz in order to satisfy the constraints required for the architecture
to correctly calculate the quantized output frequency. The quantized output phase is
calculated using the phase detection scheme shown in Figure 6(b), but with 250 MHz
reference phases to match the 250 MHz nominal oscillation frequency. The code for the
vco_integrator_quantizer module can be seen by double clicking on the module and
pressing the button labeled Edit CppSim Code.

B. Running CppSim Simulations

In the Sue2 schematic window, click on the Tools text box in the menubar, and then
select CppSim Simulation. A Run Menu window similar to the one shown below should
open automatically. Note that the Run Menu is already synchronized to the schematic that
you will be simulating (test_vco_quantizer). If for whatever reason this is not the case,
click on the Synchronize button in the menu bar, and the Run Menu will be synchronized
to the schematic in your Sue2 window.

To establish the simulation parameters, click on the Edit Sim File button in the menu. An
Emacs window should appear displaying the contents of the simulation parameters file
(test.par). The contents of your test.par file should look something like what is shown
below:

///
// CppSim Sim File: test.par
// Cell: test_vco_quantizer
// Library: UltrasoundADC
///

// Number of simulation time steps
// Example: num_sim_steps: 10e3
num_sim_steps: 2e5

// Time step of simulator (in seconds)
// Example: Ts: 1/10e9
Ts: 1/100e9

// Output File name
// Example: name below produces test.tr0, test.tr1, ...
// Note: you can decimate, start saving at a given time offset, etc.
// -> See pages 34-35 of CppSim manual (i.e., output: section)
output: test_tran start_sample=1e5

// Nodes to be included in Output File
// Example: probe: n0 n1 xi12.n3 xi14.xi12.n0
probe: in clk freq_out phase_out dac_out

///
// Note: Items below can be kept blank if desired
///

// Values for global parameters used in schematic
// Example: global_param: in_gl=92.1 delta_gl=0.0 step_time_gl=100e3*Ts
global_param:

// Rerun simulation with different global parameter values
// Example: alter: in_gl = 90:2:98
// See pages 37-38 of CppSim manual (i.e., alter: section)
alter:

When you are finished, you can close the Emacs window by pressing Ctrl-x Ctrl-c. To
launch the simulation, click on the menu bar button labeled Compile/Run.

Plotting Time-Domain Results

Double-click on the CppSimView icon to start the CppSim viewer. The viewer should
appear as shown below – notice that the banner indicates that it is currently synchronized
to the test_vco_quantizer cellview. If this is not the case, Sue2 and CppSimView can be
synchronized by clicking the Synch button on the left-hand side of the CppSimView
window.

To view the simulation results, first click on the radio button titled No Output File.
Immediately after this button is clicked, the radio button will instead display the output
file’s name, test_tran.tr0. Next, click on the Load button on the left-hand side of the
CppSimView window. Once this button is pressed, the Nodes radio button will be filled
in, and the probed nodes will be listed, as shown below.

A. Output Signal Plots

In the CppSimView window, double-click on signals in, freq_out and phase_out. You
should see plots of the input signal applied to the ADC’s, and the output waveforms of
the voltage-to-frequency and voltage-to-phase VCO-based ADC’s, as shown below.
Even from this simple transient plot, the signal distortion caused by the non-linearity of
the VCO Kv is evident in the output waveform of the voltage-to-frequency ADC. Note,
however, that the output of the voltage-to-phase quantizer does not appear to exhibit this
distortion.

Plotting Frequency Domain Results

While viewing transient waveforms offer some intuition concerning the operation of the
voltage-to-frequency and voltage-to-phase VCO-based ADC’s, analyzing the frequency-
domain results are essential in order to evaluate the performance of the overall
architecture. To that end, longer simulations must be performed so that FFT’s with
sufficient resolution can be generated. MATLAB is used to load in the CppSim
simulation data, and to calculate and plot the resulting FFT. The MATLAB script used to
generate the subsequent FFT plots (snr_plot.m) is included in the vco_ctsd_example
library.

 A. Triggering Output Data Storage

Since the outputs of the VCO-based ADC’s are 1GS/s data streams, it is not necessary to
store this information at every CppSim simulation time step Ts. Rather, the ADC output
need only be stored at every ADC sample period T = 1ns, which results in a significantly
smaller output file size. This can be accomplished by modifying the CppSim Sim File as
shown below:

num_sim_steps: 10.1e6
output: test_fft trigger=trig_sig start_sample=1e5
probe: freq_out phase_out

The above output statement will launch a 10.1-million point simulation, generate an
output file called test_fft.tr0, and will only write to the file when the trigger function
detects a rising edge in the trigger signal trig_sig. The trig_sig signal can be seen in the
test_vco_quantizer schematic, and simply corresponds to the inverted ADC clock signal
clk. The start_sample statement prevents the test_fft.tr0 output file from being written

until the 100,000th simulation time step has completed. This statement is necessary since
initial transients in the ADC’s will corrupt the FFT, and should not be recorded. Save the
changes to the test.par file, and start the CppSim simulation by clicking on the
Compile/Run button in the CppSim run menu.

B. Plotting the FFT

Once the CppSim simulation has completed, FFT’s of the voltage-to-frequency and
voltage-to-phase ADC outputs can be generated with the help of MATLAB. The plots
shown below were generated using the script (snr_plot.m) included in the distribution of
the vco_ctsd_example library. The script is executed by typing:

[SNR, SNDR, ENOB] = snr_plot(‘test_fft.tr0’,’freq_out’,1)
[SNR, SNDR, ENOB] = snr_plot(‘test_fft.tr0’,’phase_out’,1)

10
4

10
5

10
6

10
7

10
8

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20
FFT PLOT

ANALOG INPUT FREQUENCY (MHz)

A
M

P
LI

T
U

D
E

 (
dB

)

SNDR =27.814

SNR =67.671

ENOB =4.3274

(a)

10
4

10
5

10
6

10
7

10
8

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20
FFT PLOT

ANALOG INPUT FREQUENCY (MHz)

A
M

P
LI

T
U

D
E

 (
dB

)

SNDR =66.7364

SNR =88.198

ENOB =10.7929

(b)

Figure 6: 100,000-point FFT of the (a) voltage-to-frequency VCO-based ADC, and the
(b) voltage-to-phase VCO-based ADC.

As shown in Figures 6(a) and 6(b), the VCO voltage-to-phase quantizer improves the
SNDR of the converter significantly. Here, the ADC’s of Figures 5(a) and 5(b) are
modeled and simulated using CppSim behavioral simulator, and the corresponding FFT’s
plotted assuming a -1 dBFS input signal and 1 GHz sample rate. Note that in both cases,
VCO non-linearity similar to that in [3, 5] is included in the model by describing the
voltage-to-frequency transfer characteristic with a fourth-order polynomial. All other
circuit non-idealities are excluded. From Figure 6(a), it is obvious that the harmonic
distortion in the voltage-to-frequency VCO quantizer is also present here, limiting the
SNDR to roughly 30 dB in a 20 MHz bandwidth. But for the voltage-to-phase VCO
quantizer of Figure 6(b), the distortion tones are almost completely eliminated. Indeed,
the SNDR is limited primarily by the quantization noise, to approximately 66 dB in a 20
MHz bandwidth.

Proposed 4th Order CT ∆Σ ADC

The simulation results from the previous section clearly showed the improved linearity
that can be obtained when using a VCO voltage-to-phase quantizer. In reality, thermal
noise, DAC mismatch, and other noise and error terms will add on top of the quantization
noise floor, further degrading SNDR. To ensure high resolution, it is necessary to expand
the loop filter and go beyond first-order noise shaping so that quantization noise can be
further suppressed. Ultimately, the converter SNDR should be limited by thermal noise
sources, and not by in-band quantization noise.

s
K1
s

Kz

Kf1

Kf2

K2
s

K3
s

T

Q[n]

Kd2

Kd3

VCO Quantizer

z-1Kd1

in(t) out[n]

RZ DAC

NRZ DACs

Loop Filter

z-1/2 (1-z-1)

Figure 7: block diagram of the proposed 4th order CT ∆Σ ADC.

Figure 8: schematic of the proposed ADC loop filter.

A fourth-order loop filter was chosen for this thesis due to its high quantization noise
shaping ability (SQNR > 95dB in 20 MHz BW). The block diagram of the filter, which
leverages feedforward and feedback stabilization, is shown in Figure 7, and a schematic

realization of the filter is shown in Figure 8. The coefficients for the filter were chosen
using the MATLAB Delta-Sigma Toolbox [6]. Since the toolbox returns coefficients for
a DT filter, the equivalent CT loop filter coefficients were obtained by applying the d2c
(discrete-time to continuous-time transformation) function available in the MATLAB
Signal Processing Toolbox. More information concerning the construction of the filter
can be found in the thesis [2].

For the remainder of this tutorial, we will be primarily working with the top-level
schematic of the proposed ADC architecture. All results that will be reported in the
subsequent sections of this document were obtained by simulating this top-level
schematic. To view the top level schematic in Sue2, ensure that the vco_ctsd_example
library is selected and click on the adc_top_4bit_nrz schematic. The schematic window
should then appear as shown below. Some key signals in this schematic are:

 phase_out: the output of the VCO voltage-to-phase quantizer

 vin: the input voltage to the VCO voltage-to-phase quantizer (also used to
 simulate the impact of finite output impedance of the minor-loop DAC’s)

Notice that the parameters of many of the modules are variables, or include a variable.
To view or change these variable values, open the top-level schematic Sim File. A
summary of the key variables of the Sim File is shown below:

//enable or disable DWA for the DAC's
dwa_en_dac1 = 1.0;
dwa_en_dac2 = 1.0;

//enable or disable mismatch and noise in different blocks
vco_mm_en = 0.0;
dac1_mm_en = 0.0;
dac2_mm_en = 0.0;
dac1_sw_mm_en = 0.0;
dac2_sw_mm_en = 0.0;
noise_en = 0.0;
nonlin_en_vco = 0.0;
nonlin_en_amp = 0.0;
jitter_en = 0.0;

//values of the 1-sigma mismatch for use in Monte Carlo
dac_per_mm = 1.0
dac_sw_per_mm = 3.0
dac2_rz_per_mm = 4.0
dac2_nrz_per_mm = 4.0
dac2_sw_per_mm = 4.0
vco_per_mm = 10.0

//main DAC output resistance
rout_dac1 = 1e9

//random number generator seed value
//(incremented during Monte-Carlo simulation)
mm_seed_accum = 0

//input signal frequency and amplitude
fin = 2e6
ain = 0.71

//Opamp gain and bandwidth parameters
//kbw = 2.5/4.0 means amplifier will have a unity-gain
//bandwidth of 4.0 GHz (kbw is normalized to a 2.5 GHz BW)
//kgain = 1.0 means amplifier will have a DC gain of 60dB
//(kgain is normalized to a DC gain of 60dB)
kbw = 2.5/4.0
kgain = 1.0

//Loop filter coefficients (from Schreier Toolbox)
kd2 = 1.7177
kz = 0.0117
kf2 = 0.8171
km = 0.0293
kf1 = 8.0983
kd3 = 1.3475
alpha = 0.15
kint = 900e6
katten = 0.25

Examining Non-Idealities

This section will build on the simple block-diagram behavioral model of the proposed
ADC of Figure 7 by incrementally adding non-idealities to the model. This way, the
impact of mismatches, noise, and other error sources found in real circuits can be studied
both independently and collectively, elucidating which non-idealities limit the proposed
converter’s performance. At the same time, this methodical process of introducing real
circuit non-idealities will eventually produce a behavioral model that can accurately
predict the converter’s actual measured performance. More details on the behavioral
model can be found in [1].

A. Amplifier Non-Linearity and Finite Gain-Bandwidth

The effect of amplifier non-linearity as well as its connection to amplifier finite gain-
bandwidth can be understood intuitively when the signals stimulating the input of a non-
linear opamp are considered (see Figure 9). As before, quantization noise perturbs the
input nodes of the opamp, prompting the amplifier to cancel out the perturbation via its
negative feedback network such that the virtual ground condition is re-established. This
time, however, the quantization noise will also encounter the opamp’s non-linear gain
characteristic, causing the amplifier to settle in a nonlinear fashion, and resulting in
inband quantization noise folding.

Figure 9: quantization noise appearing at the input of an opamp, characterized by a non-
linear transfer function Â(s)

While the amount of quantization noise folding depends on the size of the perturbation as
well as the characteristics of the non-linearity, it is also strongly related to the settling
speed of the amplifier. A faster amplifier will act to restore the virtual ground condition
more quickly, which effectively reduces the time that the quantization noise encounters

the non-linearity. This in turn reduces the non-linear settling transient that is integrated by
subsequent integration stages in the loop filter, resulting in less quantization noise folding.

The degree to which the converter’s performance will be affected by these non-idealities
will depend on the amplifier’s open-loop characteristics, which will in turn depend on the
implemented topology. Information about the exact opamp implementation (a 4-stage
modified nested Miller amplifier) and a detailed explanation of the opamp-integrator
behavioral model can be found in [1]. For the purposes of this tutorial, we will simply
focus on how to simulate the impact of different finite opamp gain and bandwidth on the
proposed architecture. This can be accomplished by modifying the definitions of the
variables kbw and kgain in the CppSim Sim File:

kbw = 2.5/4.0
kgain = 1.0

kbw defines the opamp unity-gain bandwidth, and is normalized to a unity-gain
bandwidth of 2.5 GHz. Consequently, the line above (kbw = 2.5/4.0) sets the opamp
unity-gain bandwidth to 4.0 GHz. kgain scales the gain-per-stage of the opamp (a 4-
stage modified nested Miller), and is normalized to a total 4-stage gain of 60 dB.
Therefore, to scale the total DC gain up or down by a factor k, kgain should be scaled by
(k)1/4. For example, to increase the DC gain to 80 dB (a factor of 10 increase relative to
60 dB), kgain should be scaled by (10)1/4 ≈ 1.7783.

To quantify the impact of opamp non-linearity in behavioral simulation, the linear opamp
model described in the previous section must be modified to include the specific
characteristics of the non-linearity. Circuit simulations reveal that the non-linearity of
most differential-pair based gain stages resembles a tanh(x) function, making this task
relatively easy. More details of the non-linear opamp-integrator model can be found in
the thesis [1]. For the purposes of this tutorial, we will simply focus on simulating the
impact of opamp non-linearity on the proposed architecture. This can be accomplished
by changing the value of the variable of nonlin_en_amp in the CppSim Sim File:

nonlin_en_amp = 1.0

Significant insight can be obtained from the behavioral simulation results, especially as it
pertains to the unity-gain bandwidth requirements for the opamps. Figure 10 plots the
behavioral simulated SNR/SNDR of the proposed ADC architecture for different opamp
unity-gain frequencies assuming a DC gain of 60dB, and with opamp non-linearity
included in the behavioral model. As can be seen from the figure, the SNR/SNDR
degrades steadily when the unity-gain bandwidth is decreased from 4.5 GHz down to 2.5
GHz. Indeed, to achieve close to 14 ENOB performance, an opamp with greater than 3.5
GHz unity-gain bandwidth must be designed.

2.5 3 3.5 4 4.5
74

76

78

80

82

84

86

88

90

92

Opamp Unity Gain Bandwidth (GHz)

S
N

R
/S

N
D

R
 (

dB
)

SNR
SNDR

Figure 10: behavioral simulated SNR/SNDR of the proposed ADC assuming nonlinear
opamps with a DC gain of 60 dB, and various unity-gain bandwidths. Only quantization
noise, VCO non-linearity, and amplifier non-linearity and finite gain-bandwidth are
considered in the behavioral simulations.

The SNR/SNDR calculations were obtained by modifying the CppSim Sim File:

num_sim_steps = 9.1e6
output: test_fft trigger=trig_sig start_sample=1e5

The resulting CppSim output file is then processed with the snr_plot.m script included
in adc_top_4bit_nrz simulation result directory:
\CppSim\SimRuns\vco_ctsd_example\

[snr,sndr,enob] = snr_plot(‘test_fft.tr0’,‘phase_out’,1)

B. Finite DAC Impedance

As discussed in the previous section, the opamp’s finite gain-bandwidth limitation will
result in quantization noise appearing at the input node of the amplifier. Unfortunately,
any movement at this node will modulate the drain-to-source voltages of the MOSFET’s
comprising the DAC unit elements, resulting in a parasitic current due to the DAC’s
finite output resistance. Furthermore, this output resistance will vary according to the
applied DAC code, resulting in a parasitic current that varies in signal-dependent manner.

Figure 11: the main feedback DAC behavioral model, which includes the effect of finite
output resistance.

10
3

10
4

10
5

10
6

10
7

70

75

80

85

90

95

Output Resistance (Ω)

S
N

R
/S

N
D

R
 (

dB
)

SNR
SNDR

Figure 12: impact on SNR/SNDR due to the main feedback DAC’s finite output
resistance and amplifier non-linearity and finite gain-bandwidth.

To quantify the impact of the DAC’s finite output resistance on the converter’s
SNR/SNDR in simulation, the DAC behavioral model shown in Figure 11 was created.
Note that a single-ended version is shown for simplicity, while fully differential amplifier
and DAC topologies were actually implemented. Here, an array of conductances is used
to describe the finite resistances of the unit-elements, and are either enabled or disabled
to mimic the code dependency of the output resistance. Simulating the impact of finite
output resistance in the main feedback DAC can be accomplished by sweeping the value
of the variable of rout_dac1 in the CppSim Sim File:

alter: rout_dac1 = 1e3 1e4 1e5 1e6 1e7

A plot detailing the simulated SNR/SNDR for a range of DAC output resistances is
shown in Figure 12. From these results, it is clear that the effect of finite resistance can
largely be ignored when a minimum unit-element output resistance of 30kΩ is achieved.
Indeed, quantization noise-folding caused by amplifier non-linearity and gain-bandwidth
limitations appear to mask the errors caused by DAC output resistances when this
minimum resistance threshold is exceeded.

C. Device Noise

In many state-of-the-art data converter designs, device noise establishes the upper limit
on achievable SNR. Consequently, the converter resolution ultimately becomes a
question of how much power the designer is willing to sacrifice to reduce the device
noise to a desired level. In CT Σ ADC’s, the device noise primarily originates from the
main feedback DAC, the first integrator, and the input resistors.

A conservative estimate of all these noise sources given the desired power budget is
roughly 5nV/ √Hz. To achieve near 14 ENOB resolution then dictates that the full-scale
signal be on the order of 2Vpp,diff , resulting in an ideal SNR of 90 dB (14.7 ENOB). Note
however, that applying a fullscale input to a ∆Σ ADC can cause saturation in the
integrators, resulting in quantization noise-folding. For the proposed topology, behavioral
simulations in CppSim show that the maximum input signal possible is -3 dBFS,
resulting in a peak ideal SNR of 87 dB. While the SNR appears to offer solid 14 ENOB
performance, in reality the thermal noise will add to the quantization noise floor due to
opamp non-linearity and finite gain-bandwidth. Consequently, the ADC architecture must
be simulated to obtain a more accurate estimate of the SNR/SNDR.

Histograms generated by running 50 Monte-Carlo simulations (in which the seed of the
random noise generator is varied) of the proposed architecture are shown in Figure 13.
The simulation data was obtained by enabling thermal noise in the simulation, and
incrementing the mm_seed_accum variable 50 times so that the random noise generator
will be seeded in a different manner each time. To shorten the overall simulation time of
the Monte-Carlo, only 100,000 simulation points are stored into memory (as opposed to
the 1-million points stored in previous simulations):

num_sim_steps = 1e6
noise_en = 1.0
alter: mm_seed_accum = 1:50

Figure 13: histograms of the behavioral simulated SNR/SNDR of the proposed ADC
architecture assuming a thermal noise density of 5nV/ √Hz. Data obtained by running 50
Monte-Carlo simulations of the proposed architecture, and changing the seed of the
random noise generator.

Note that the noise variances are already defined in the adc_top_4bit_nrz schematic
file. As shown in Figure 13, the average SNR/SNDR of 85.1/84.2 dB suggests that the
noise floor is effectively 2 dB higher than the thermal noise limited case due to inband
quantization noise folding from the amplifier non-linearity and finite gain-bandwidth.
Note however, that additional noise sources (particularly static and dynamic mismatch
errors from the main feedback DAC) will add to this noise floor, further degrading
SNR/SNDR as will be discussed later.

D. VCO Unit Element Mismatch

Mismatches in the delay stages comprising the ring oscillator result in a net accumulated
phase error at the end of each sampling period. Fortunately, these errors will be
suppressed by the gain of the preceding loop filter, and should result in a small
degradation of SNDR when referred to the input.

Figure 14: histogram of the behavioral simulated SNR/SNDR of the proposed ADC
architecture assuming a 15-stage ring-VCO with delay stage mismatches of 1σ = 5 %,
7.5%, and 10%. Data obtained by running 50Monte-Carlo simulations of the proposed
architecture for each mismatch deviation.

To verify the architecture’s robustness to this variation, we can introduce delay stage
mismatch into the behavioral model and perform Monte-Carlo simulation by modifying
the CppSim Sim File:

vco_mm_en = 1.0
vco_per_mm = 5.0 7.5 10.0
mm_seed_accum = 1:50

The above code will perform 50 simulations per each VCO mismatch standard deviation
(5.0%, 7.5% and 10.0%) while varying the mismatch in each simulation in a Monte-Carlo
fashion. The simulation produces 150 output files which can then be processed in
MATLAB to collect statistics, as shown in Figure 14, which plots the histograms of the
simulated SNR/SNDR. As can be seen from the histograms, even a mismatch as large as
1σ = 10% will result in an average SNR/SNDR of 84.7/83.9 dB, a degradation of less
than 0.5dB.

E. Main NRZ DAC Unit Element Mismatch

While mismatches in the second and third feedback DAC unit elements will be shaped by
the high gain of the preceding loop filter, mismatches in the main feedback DAC unit
elements appear directly at the input of the ADC. Consequently, the main feedback DAC
must perform at least as well as the entire converter, a very challenging requirement.
Fortunately, data-directed dynamic element matching (DEM) algorithms have been
developed to shape DAC unit-element mismatch errors, enabling high performance
compared to prior scrambling algorithms that relied on random selection of DAC unit-
elements.

Figure 15: histogram of the behavioral simulated SNR/SNDR of the proposed ADC
architecture for DAC unit-element mismatches of 1σ = 0.5%, 1.0%, and 1.5%. Data
generated by running 50 Monte-Carlo simulations of the proposed architecture for each
mismatch deviation.

For the proposed ADC, the dynamic weighted averaging (DWA) algorithm was chosen
for its superior inband mismatch shaping ability. Nevertheless, behavioral simulations
reveal that even this shaped DAC mismatch has a severe impact on converter SNDR. To
include the effect of unit-element mismatch in the behavioral model, as well as to enable
the DWA algorithm in simulation, the CppSim Sim File should be modified as shown
below:

dwa_en_dac1 = 1.0;
dac1_mm_en = 1.0;

Note that the main feedback DAC unit element mismatch deviation (dac_per_mm) is
already defined in the Sim File. Monte-Carlo simulation can then be performed in the
manner described in the previous section.

As shown in the histograms of Figure 15, even a unit-element mismatch of just 1.5%
causes the average SNDR to degrade by 2 dB. While careful design and layout
techniques can enable unit-element current source matching of less than 1%, an estimate
of 1% will nevertheless be assumed for the remainder of this document. With this
assumption, unit-element mismatch in the main DAC would result in an average
SNR/SNDR of 84.0/82.7 dB.

F. Main NRZ DAC Inter-Symbol Interference (ISI)

In some sense, the term dynamic element matching (DEM) is a misnomer in that its
purpose is to shape a static error, namely mismatches in the DC current values of the unit
elements in a current-source DAC topology. However, such topologies do encounter a
real dynamic error during switching transients, a phenomenon known as inter-symbol
interference (ISI). ISI occurs when the unit elements have mismatched output current
transients during switching. The mismatch itself can be caused by a number of factors,
but is typically due to unequal rising/falling switching time constants, charge injection,
and parasitic clock/data feed-through.

Selected

Unselected

DWA Selection Sequence

Figure 16: transistor-level simulation of NRZ DAC output current with DWA disabled
and enabled.

When ISI exhibits any code dependency (as is the case for an NRZ DAC), it will cause
distortion tones in the ADC output spectrum, degrading the overall converter SNDR. At
the same time, these tones cannot be scrambled and shaped by the DEM. As shown in
Figure 16, although a DWA sequence is inputted to the DAC, the transient mismatches

and transition densities still exhibit a code dependency when the DAC code exceeds half
of full scale since all selected unit elements will not experience a switching transient.

As behavioral simulations reveal, ISI degrades converter resolution through its creation
of strong distortion tones. To include the effect of transient mismatch in the behavioral
model, the CppSim Sim File should be modified as shown below:

dac1_sw_mm_en = 1.0;

Note that the main feedback DAC ISI deviation (dac_sw_per_mm) is already defined in
the Sim File. Monte-Carlo simulation can then be performed in the manner described in
the previous section.

Figure 17: histograms of the behavioral simulated SNR/SNDR of the proposed ADC
architecture assuming a main NRZ DAC with transient mismatch (ISI) of 1σ = 1%, 3%,
and 5%. Data generated by running 50 Monte-Carlo simulations of the proposed ADC
architecture for each mismatch deviation.

Indeed, the histograms of Figure 17 show that steadily increasing the mismatch in the
switching transients degrades the SNDR by as much as 5dB compared to the ISI-less case,
while the SNR remains relatively constant. Interestingly, the simulation results also
reveal another undesirable effect of ISI, namely a wider variation in the range of
achievable SNDR. Like the ring-VCO delay stages, estimating the transient mismatch is
not straightforward as it will vary due to process and layout parasitics. However, the

switching devices are much larger than a ring-VCO delay stage in terms of area since
they must switch large currents. Consequently, an estimate of 3% will be assumed for this
mismatch, resulting in an average SNR/SNDR of 83.9/78.9 dB, almost a 4 dB
degradation compared to the ISI-less case.

G. Minor-Loop NRZ and RZ DAC Unit-Element Mismatch and ISI

As previously mentioned, errors in the minor-loop DAC’s are suppressed by the gain of
the loop filter, and will also be shaped by the DWA algorithm. Therefore, the minor-loop
DAC’s can be made smaller and the architecture can tolerate a higher degree of mismatch
and ISI in their unit elements. To include the effect of minor-loop DAC ISI and unit-
element in the behavioral model, the CppSim Sim File should be modified as shown
below:

SNR (dB) SNDR (dB)

Figure 18: histograms of the simulated SNR/SNDR assuming a minor-loop RZ and NRZ
DAC’s with unit-element and transient mismatches (ISI) of 1σ = 3%, 4%, and 5%. Data
generated by running 50 Monte-Carlo simulations of the proposed ADC architecture for
each mismatch deviation.

dac2_mm_en = 1.0;
dac2_sw_mm_en = 1.0;

Note that the minor-loop DAC mismatch and ISI deviations (dac2_rz_per_mm,
dac2_nrz_per_mm, dac2_sw_per_mm) are already defined in the Sim File. Monte-Carlo
simulation can then be performed in the manner described in the previous section.

Histograms of the simulated SNR/SNDR assuming a variety of minor-loop DAC
mismatches and ISI are shown in Figure 18. Even when using a conservative mismatch
estimate of 1σ = 5% for both unit-element and transient mismatches, behavioral
simulations indicate that the proposed architecture can still achieve an average
SNR/SNDR of 83/79 dB. Consequently, it is clear that mismatches in the minor-loop
DAC are not as serious as those in the main NRZ feedback DAC thanks to the loop filter
gain.

H. Clock Jitter

The deleterious effect of clock jitter on the SNDR of CT ∆Σ ADC’s has been well
documented in the literature. Fortunately, by specifically adopting a multibit NRZ DAC
structure, the converter can be made less sensitive to clock jitter than the prototypical
single-bit modulator. To verify the architecture’s insensitivity to jitter, the behavioral
model is modified to include variable amounts of clock jitter. This can be accomplished
by modifying the value of the noise generator stimulating the input of the clock signal
source, as shown below:

The value of the noise variance needed to establish a certain jitter will depend on the
ADC clock frequency and cut-off frequency of the noise filter. To see this, specify the
noise variance to be 1e-12, and the noise filter cutoff frequency to be 100 kHz. Then, add
the nodes edge_clk and edge_ref to the list of probed nodes in the Sim File, and run a 1-
million point simulation:

num_sim_steps: 1.0e6;
probe: edge_clk edge_ref;

When the simulation has completed, open the simulation output file in CppSimView, and
click on the plotsig(…) radio button to see a list of different plotting functions. Select
the plot_pll_jitter(x,’…’) function and replace the variables ref_timing_node with
edge_ref, and start_edge with 10, and then press Enter. The CppSimView window
should then appear as shown below:

Next, click on the nodes radio button, and double click on the on the node labeled
edge_clk. You should obtain a plot similar to what is shown below:

In this case, the noise variance of 1e-12 and noise filter cutoff frequency of 100 kHz
corresponds to a jitter of 360 fs,RMS. By modifying the noise variance, different levels

of clock jitter can then be introduced into the simulation of the ADC. Note that in reality,
the impact of jitter on the ADC performance will depend on the exact phase noise
spectrum of the ADC clock source, which will in turn depend on the exact PLL
implementation. Thus, the PLL can be designed in synchrony with the ADC, but doing
so is beyond the context of this tutorial. The method described above is simply a quick
means of introducing jitter in the simulation.

Figure 19 shows the average and standard deviation converter SNR and SNDR from
Monte Carlo behavioral simulations, assuming a clock jitter as low as 250 fs,RMS up to
more than 100 ps,RMS. As can be seen, the architecture can tolerate up to 4-5 ps,RMS of
jitter without significant degradation of converter resolution, thus validating the multibit
NRZ DAC’s robustness to clock jitter.

SNR
SNDR

SNR
SNDR

Figure 19: average and standard deviation SNR and SNDR for variable amounts of clock
jitter, as determined from Monte Carlo behavioral simulations.

I. Summary

The simulated performance of the proposed ADC is summarized in Table 1, and a
representative FFT of the digitized ADC output when sources of noise and nonlinearity
are enabled and disabled is shown in Figure 20. All SNR/SNDR calculations assume a 20
MHz input bandwidth, a 900 MHz clock rate (OSR=22.5), and a 2 MHz input sine wave
with an amplitude of -3 dBFS. As shown in row 1 of the table, the converter achieves a
signal-to-quantization noise (SQNR) of 95.5 dB. The inclusion of VCO non-linearity in
the model (row 2) causes less than 1 dB degradation in SNDR, thus illustrating the
advantage of using the VCO as a voltage-to-phase quantizer. Amplifier non-linearity and
finite gain-bandwidth, finite DAC output resistance, and thermal noise sources (row 3-5)

degrade the SNDR level to about 84 dB. Mismatches in the VCO delay stages (row 6)
have less than 1 dB impact on the overall SNDR, despite the high variation of 10%.

-3 dBFS 2 MHz Input Sine Wave
20 MHz bandwidth, fs = 900 MHz
(OSR=22.5)

SNR
(dB)

SNDR
(dB)

1. Quantization noise only 95.7 95.5
2. VCO Kv non-linearity 95.0 94.9

3. Amplifier non-linearity and finite gain-
bandwidth 88.3 87.7

4. DAC finite output resistance 88.4 88.0
5. Thermal noise 85.1 84.2
6. Ring-VCO delay-stage mismatch 84.7 83.9

7. Main feedback DAC unit element
current mismatch 84.0 82.7

8. Main feedback DAC transient mismatch
(ISI) 83.9 78.9

9. Main and minor-loop feedback DAC’s
unit element and transient mismatch 82.9 78.3

Table 1: simulated performance of the proposed ADC architecture.

10
5

10
6

10
7

10
8

200

180

160

140

120

100

80

60

40

20

0

20
FFT PLOT

ANALOG INPUT FREQUENCY (MHz)

A
M

P
LI

T
U

D
E

 (
dB

)

Quantization

Noise Only:

SQNR ~ 95 dB

All Noise and

Non-Linearity:

SNDR ~ 80 dB

20 MHz Bandwidth

Figure 20: representative FFT of the simulated ADC output with quantization noise only
(dark) and all noise/mismatch sources included (light).

To evaluate the effect of DAC unit-element mismatch, variations of 1σ = 1% was
assumed for the main NRZ feedback DAC, and 1σ = 4% were assumed for the minor
loop NRZ and RZ feedback DAC’s. Although first-order shaped by the DWA algorithm,
mismatches in the main DAC feedback (row 7) still degrade the SNR/SNDR by roughly
1 dB. However, ISI in the main DAC has a much larger impact on the converter
SNR/SNDR, resulting in a 4 dB decrease (row 8). As expected, ISI and the first-order
shaped mismatches from the minor loop DAC’s have a much smaller impact on converter
performance compared to the main feedback DAC. Nevertheless, errors in these DAC’s
result in a 1 dB decrease in SNR (row 9).

Conclusion

This tutorial covers issues related to the behavioral simulation of a 4th order CT ∆Σ ADC
with VCO-based integrator and quantizer example using CppSim. In particular, the
reader has been introduced to the tasks of running CppSim simulations, generating FFT
plots, and performing Monte-Carlo simulation, as well as viewing the impact of non-
idealities, such as amplifier non-linearity, finite gain and bandwidth, DAC unit-element
mismatch and ISI, thermal noise, VCO delay element mismatch, and clock jitter. Finally,
the reader has been given an overview of VCO-based ADC designs, with emphasis
placed on the linearity improvement obtained with the proposed voltage-to-phase
architecture, compared to prior published voltage-to-frequency architectures.

References

[1] M. Park, “A 78-dB SNDR 87-mW 20 MHz Bandwidth Continuous-Time Delta-
Sigma ADC with VCO-Based Integrator and Quantizer”, IEEE ISSCC Dig. Tech. Papers,
2009

[2] M. Park, “A 4th Order Continuous-Time ∆Σ ADC with VCO-Based Integrator and
Quantizer”, PhD Thesis, Massachusetts Institute of Technology, February 2009

[3] M. Hovin, A. Olsen, T. Sverre, and C. Toumazou. Delta-Sigma Modulators Using
Frequency-Modulated Intermediate Values. IEEE J. Solid-State Circuits, 32(1):13–22,
January 1997.

[4] E. Alon, V. Stojanovic, and M. A. Horowitz. Circuits and Techniques for High
Resolution Measurement of On-Chip Power Supply Noise. IEEE J. Solid-State Circuits,
40(4):820–828, April 2005.

[5] M. Z. Straayer and M. H. Perrott. A 12-bit 10-MHz Bandwidth, Continuous-Time
Sigma-Delta ADC With a 5-bit, 950 MS/S VCO-based Quantizer. IEEE J. Solid-State
Circuits, 43(4):805–814, April 2008.

[6] R. Schreier. Delta Sigma Toolbox. http://www.mathworks.com/.

