
1	
	

Behavioral	Simulation	of	A	Second	Order	Discrete	
Time	Delta‐Sigma	ADC	Using	CppSim	

	
Wala	Saadeh	
Ayman	Shabra	
Michael	Perrot	

	
Masdar	Institute	of	Science	and	Technology,	UAE		

December	7,	2013	
	

Copyright © 2013 by Wala Saadeh 	
All rights reserved.

	

Table of Contents 	
	
Setup	...	2
Introduction	...	4
A.	Delta‐Sigma	Modulators	..	4
B.	Delta	Sigma	Matlab	Toolbox	...	5
C.	Second	Order	Delta	Sigma	ADC	Example	...	6

Preliminaries	..	14
A.	Opening	Sue2	Schematics	..	14
B.	Running	CppSim	Simulations	..	15

Plotting	Time‐Domain	Results	..	17
A.	Output	Signal	Plots	..	18
B.	Matlab	Verification	of	Output	Spectrum	...	22

Conclusion	..	25
References	..	25
Appendix	A:	Matlab	Synthesis	Code	...	26
Appendix	B:	Matlab	Verification	Code	(calculate_snr.m)	..	29
	
	

2	
	

Setup	

Download	 and	 install	 the	 CppSim	 Version	 5	 package	 (i.e.,	 download	 and	 run	 the	
self‐extracting	file	named	setup_cppsim5.exe)	located	at:	
	

http://www.cppsim.com/download.html	
	
Upon	 completion	 of	 the	 installation,	 you	 will	 see	 icons	 on	 the	 Windows	 desktop	
corresponding	to	the	Sue2,	CppSimView,	and	PLL	Design	Assistant.		Please	read	the	
“CppSim/VppSim	Primer”	 document,	 which	 is	 also	 at	 the	 same	web	 address,	 to	
become	acquainted	with	CppSim	and	its	various	components.		You	should	also	read	
the	 manual	 “PLL	 Design	 Using	 the	 PLL	 Design	 Assistant	 Program”,	 which	 is	
located	 at	 http://www.cppsim.com,	 to	 obtain	 more	 information	 about	 the	 PLL	
Design	Assistant	as	it	is	briefly	used	in	this	document.		
	
To	 run	 this	 tutorial,	 you	 will	 also	 need	 to	 download	 the	 file	
sigma_delta_ord2_dt_adc_example.tar.gz	 available	 at	 http://www.cppsim.com,	
and	 place	 it	 in	 the	 Import_Export	 directory	 of	 CppSim	 (assumed	 to	 be	
c:/CppSim/Import_Export).		Once	you	do	so,	start	up	Sue2	by	clicking	on	its	icon,	
and	then	click	on	Tools‐>Library	Manager	as	shown	in	the	figure	below.	
	

	
	
In	the	CppSim	Library	Manager	window	that	appears,	click	on	the	Import	Library	
Tool	button	as	shown	in	the	figure	below.	

3	
	

	
	

In	 the	 Import	 CppSim	 Library	 window	 that	 appears,	 change	 the	 Destination	
Library	 to	 Sigma_delta_ord2_dt_adc_example,	 click	 on	 the	 Source	File/Library	
labeled	 as	 sigma_delta_ord2_dt_adc_example.tar.gz,	 and	 then	 press	 the	 Import	
button	 as	 shown	 in	 the	 figure	 below.	 	 Note	 that	 if	
sigma_delta_ord2_dt_adc_example.tar.gz	 does	 not	 appear	 as	 an	 option	 in	 the	
Source	File/Library	selection	listbox,	then	you	need	to	place	this	file	(downloaded	
from	 http://www.cppsim.com)	 in	 the	 c:/CppSim/Import_Export	 directory.

4	
	

	
	

	
Once	 you	 have	 completed	 the	 above	 steps,	 restart	 Sue2	 as	 directed	 in	 the	 above	
figure.	
	
Introduction		

CppSim is a free behavioral simulation package that leverages the C++ language to allow
very fast simulation of a wide array of system types. The goal of this tutorial is to expose
the reader to a Sigma-Delta ADC system where modeling with CppSim enables the
exploration of key design issues, and may inspire new architectures for improved
performance.
	
	
A.	Delta‐Sigma	Modulators	
	
Delta-Sigma () modulators have been in existence for many years and have found
adoption in a huge number of circuits and systems applications, from instrumentation to
communications. The key advantage of these converters is that they provide a low cost and
robust implementation for achieving wide dynamic range and high resolution in converting
low bandwidth input signals.

The combination of oversampling and quantization noise shaping techniques allow 

5	
	

modulators to be immune to many analog circuit limitations, thus making them extensively
used to realize embedded analog-to-digital interfaces in modern systems-on-chip (SoCs)
integrated in advanced CMOS processes1.

Over the last few years, significant efforts have been made to decrease the power
consumption and to increase the speed of , while at the same time maintaining flexibility
and compatibility with mainstream digital technologies. The conceptual block diagram of
basic 1st order  ADC is shown in Figure 1 and is built around summers, integrators,
quantizers, DACs, and digital decimation filters.
	

	
	

Figure 1: First Order  ADC block diagram

A	delta	sigma	modulator	has	three	degrees	of	freedom	to	optimize	its	performance,	
which	are	modulator‐order,	quantizer	resolution	and	the	oversampling	ratio	(OSR).	
The	degree	to	which	the	quantization	noise	can	be	attenuated	depends	on	the	order	
of	the	noise	shaping	and	the	oversampling	ratio.	Given	the	 input	signal	bandwidth	
(BW),	and	after	choosing	a	reasonable	clock	frequency	fs,	we	calculate	OSR	=	 ௙ೞ

ଶ∗஻ௐ
	.	

Each	 octave	 increase	 in	OSR	 increases	MOD1	 (order	 =	 1)	 SNR	 by	 9dB	 and	MOD2	
(order	=	2)	SNR	by	15	dB	[1]	[2].	
	
B.	Delta	Sigma	Matlab	Toolbox	
	
Richard Schreier’s Delta-Sigma Matlab Toolbox is a state of the art tool for the design,
simulation and realization of  ADCs. The toolbox is widely utilized in generating the
required coefficients for  topologies based on the input target specifications.
	
The Delta-Sigma Toolbox includes many functions which support NTF synthesis,
modulator simulation, realization, dynamic range scaling, SNR estimation and much more.
The toolbox can be downloaded from the MathWorks file exchange website:
http://www.mathworks.com/matlabcentral/fileexchange/19‐delta‐sigma‐toolbox/
all_files	
	
The toolbox documentation is the file DSToolbox.pdf which is available as part of the
download from the MathWorks file exchange website above.
	
	

																																																								
1	de	la	Rosa,	J.M.;	,	"Sigma‐Delta	Modulators:	Tutorial	Overview,	Design	Guide,	and	State‐of‐the‐Art	
Survey,"	Circuits	and	Systems	I:	Regular	Papers,	IEEE	Transactions	on	,	vol.58,	no.1,	pp.1‐21,	Jan.	2011	

 Q

CLK

V
U

Y

DAC

Digital
Filter

Dout

6	
	

	
	
C.	Second	Order	Delta	Sigma	ADC	Example	
	
To	 develop	 a	 basic	 understanding	 of	 the	 design	 flow	 of	 a	  ADC, an overview
example is provided here. The design process will start with specifications such as input
bandwidth and SNR. The delsig toolbox will be used to synthesize a transfer function and
then realize it as a blocked diagram. The block diagram can be mapped to a circuit
implementation and CppSim allows fast behavioral simulations using analog components
such as opamps, switches, and comparators. The behavioral simulation will aid in
validating the circuit topology and verifying that it meets the target specifications. A very
useful aspect of the CppSim capabilities is its ability to validate noise performance using
fast transient simulations. We will show that these simulations show good correspondence
with theoretical results. 	
	
	
Specifications:

The specifications of the system we will implement are listed here and correspond to
Richard Schreier’s example in [2]:

a. Input amplitude: VFS = 1V
b. Signal Bandwidth: 1KHz
c. Target SNR : 100 dB

The design processes outlined below is implemented in the Matlab script in appendix A.
	
Matlab Synthesis:

The first step in the design process is to determine the modulator order, oversampling ratio,
and quantizer resolution. This can be accomplished using the synthesizeNTF and
simulateSNR and might require some iteration until a choice of order, OSR, and resolution
meets the requirements. For our specification this results in the following choices:

a. Architecture decision (Order): 2
b. Quantization levels: 2 levels (1 bit)
c. Sampling frequency: 1MHz
d. OSR : 500


 

7	
	

 ADC Specifications and Design Choice Summary
Parameter Value

Signal Amplitude ࢒࢒࢛ࡲࢂ V 1 ࢋ࢒ࢇࢉࡿ
Signal Bandwidth 1KHz

Sampling frequency 1MHz
Over sampling ratio (OSR) 500

Order of ∑-∆ ADC 2
Quantization levels 2 (1-bit)

Target SNR 100 dB
Form CRFB

The second step in the design flow is to determine the architectural topology. The toolbox
supports a number of popular topologies including:

 CRFB Cascade-of-resonators, feedback form.

 CRFF Cascade-of-resonators, feedforward form.

 CIFB Cascade-of-integrators, feedback form.

 CIFF Cascade-of-integrators, feedforward form.

 … D Any of the above, but the quantizer is delaying.

Each of these topologies has advantages and trade-offs which are discussed in detail in
references [1] and [2].

Once	an	appropriate	 topology	has	been	selected,	 the	realizeNTF	 function	provides	
the	values	of	the	coefficients	needed	for	the	topology.	For	example,	if	we	select	the	
2nd	 order	 CRFB	 topology	 shown	 in	 Figure	 2, the set of coefficients a, b, c and g are
generated which can be interpreted as follows:

	
A Feedback/feedforward coefficients from/to the quantizer. 1 n
G Resonator coefficients. 1 n 2]

B Feed-in coefficients from the modulator input to each integrator. 1 n + 1

C Integrator inter-stage coefficients. 1 n

8	
	

	
Figure	2:	2nd	order	CRFB	structure	(from	DSToolbox.pdf2)

The next step involves performing dynamic range scaling using the function scaleABCD.
This scales the integrator outputs such that they will remain within the opamp headroom
limits. This step produces the following coefficients for our 2nd order CRFB modulator:

a_s = [0.4852 0.3807]
g_s = [0]
b_s = [0.4852 0.3807 1.0000]
c_s = [0.3039 1.4671]

To simplify the implementation it is possible to set all the b_s coefficients to zero except
for the first one.

b_s = [0.4852 0 0]

This choice only changes the STF and has no impact on the NTF. Since the first coefficient
of a_s and b_s are equal it is possible to simplify the hardware implementation by sharing
the capacitor that implements these coefficients.

The z-plane poles and zeros of the NTF are shown in Figure	 3. The two NTF zeros are at
z=1 and provide a NTF null at dc. The poles are complex conjugate which is in contrast to
MOD2 which has its poles at the origin. This results in a lower high frequency NTF gain
and a lower Hinf.

																																																								
2	http://www.mathworks.com/matlabcentral/fileexchange/19‐delta‐sigma‐toolbox/all_files	
	

9	
	

	
Figure	3	The	noise	transfer	function	of	the	2nd	order	design	has	two	complex	conjugate	poles	(marker	X)	

and	two	zero	(marker	O)	at	dc	which	suppress	the	inband	quantization	noise.	

Matlab Simulation Results:
	
The output of the  modulator produced by the synthesis procedure outlined above is
shown in Figure	 4. The high oversampling ratio makes it difficult to clearly view the
output waveform and the output is visible only if the time axis is zoomed as shown in
Figure	5. Analyzing the output of the modulator in the time-domain is not very informative
and it is much more helpful to instead view the output in the frequency domain as a power
spectral density (PSD) as shown Figure	 6. The power spectral density clearly shows the
noise shaping and the null at DC. The quantization noise floor rises at 40dB/dec and the
inband SNR is 102dB and completely dominated by a 3rd order distortion component with
amplitude -102.3dBFS.

The modulator SNR as a function of input amplitude is shown in Figure	 7. The state
variables of the modulator x1 and x2, which are also the integrator outputs, are shown in
Figure	 8. The plot demonstrates that the dynamic range scaling step has had the intended
impact on the signal swings.
	
	

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
NTF Pole-Zero Plot

10	
	

	
Figure	4	the	input	and	output	of	the	2nd	order		modulator	generated	in	MATLAB.	The	output	is	not	

very	visible	due	to	the	high	oversampling	ratio	

	

	
Figure	5	The	output	of	2nd	order		modulator	is	only	visible	when	the	time	scale	is	adjusted.	

	
	

1 1.5 2 2.5

x 10
-3

-1.5

-1

-0.5

0

0.5

1

1.5
Time Domain Signal Response

Time (sec)

A
m

p
lit

u
de

(V
)

Output Signal

Input Signal

1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.6

x 10
-3

-1.5

-1

-0.5

0

0.5

1

1.5
Time Domain Signal Response

Time (sec)

A
m

pl
itu

d
e(

V
)

Output Signal

Input Signal

11	
	

	
	

Figure	6	The	output	power	spectral	density	with	an	full‐scale	300Hz	input	showing	the	2nd	order	noise	
shaping	in	addition	to	a	3rd	order	distortion	component	at	900Hz.	The	SNR	is	estimated	to	be	102dB	and	

is	dominated	by	the	3rd	harmonic.	

	
	

Figure	7	The	SNR	or	the	DS	modulator	improves	as	the	input	amplitude	is	increased	until	the	maximum	
stable	input	is	reached.	

	

10
1

10
2

10
3

10
4

10
5

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0
Output PSD

Frequency (Hz)

d
B

F
S

/N
B

W

SNR = 102.0dB
3rd harmonic = -102.3dBFS

-120 -100 -80 -60 -40 -20 0
-20

0

20

40

60

80

100

120

140
SNR vs Amplitude

Input Level (dB)

S
N

R
 (

d
B

)

peak SNR = 126.1dB

Simulated SNR

Predicted SNR

12	
	

	
	

Figure	8	The	modulator’s	two	state	variables	remain	within	acceptable	signal	swings	with	the	help	of	
dynamic	range	scaling	performed	by	the	delsig	toolbox	function	scaleABCD.	

	
	
	
	

	

Realization of  ADC:

Mapping the  ADC block diagram in Figure	2 to a switched capacitor implementation is
explained in detail in references [1] and [2]. The procedure involves replacing the delayless
and delaying integrators with corresponding switched capacitor integrator topologies.
Switched capacitor circuits provide convenient methods for realizing the other necessary
block diagram functions such as addition, subtraction, and digital to analog conversion. For
our case the CRFB has the same topology as MOD2 implemented in [2] since the “g”
coefficient in Figure 2 is zero. We therefore utilize the same circuit topology and only
modify the capacitor values to match the desired NTF.

The size of the input capacitors is selected based on KT/C noise consideration. To achieve
SNR = 100 dB at –3dB from the full scale of the feedback DAC, the input capacitor value
is determined as follows (taken from [2]):
	
Input	Signal	=	1V	(FS)	
	

Signal	Power	=	 ௦ܸଶതതതത ൌ ଵ

ଶ
ൈ ଵమ

ଶ
ൌ 2.5 ൈ 10ିଵ	ܸଶ	

	

In‐band	Noise	=		 ௡ܸ,ప௡ି௕௔௡ௗ
ଶതതതതതതതതതതതതത ൌ ଶ.ହൈଵ଴షభ

ଵ଴భబ
ܸଶ ൌ 2.5 ൈ 10ିଵଵ	ܸଶ		

	

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Time Domain Signal Response

Time (sec)

A
m

p
lit

u
de

(V
)

x1

x2

13	
	

Noise	Power	=		 ௡ܸ,ଶതതതത ൌ 	 	 ௡ܸ,ప௡ି௕௔௡ௗ
ଶതതതതതതതതതതതതത 	ൈ ܱܴܵ ൌ 	2.5 ൈ 10ିଵଵܸଶ 		ൈ 500 ൌ	1.25 ൈ 10଼	ܸଶ	

	

Capacitor	=	ܥଵ ൌ 	
ସ௄்

௏೙,
మ ൌ 	1.33 ൈ 10ିଵଶܨ		 ൌ ૚. ૜૜	ࡲ࢖	

The remaining capacitors are determined using the block diagram coefficients a_s and c_s
as follows:

C1f = Cin / a_s(1)
C2in = 10e-15
C2f = C2in / c_s(1)
C2dac = C2f * a_s(2)

The choice of C2in is, to some extent, arbitrary since its noise contribution is negligible.
However, to minimize power consumption the capacitor is desired to be as small as
possible, while still enabling robust implementation of the modulator coefficient. The final
capacitor values are as follows:

Cin = 1.33 pF
C1f = 2.74 pF
C2in = 10.0 fF
C2f = 32.9 fF
C2dac = 12.5 fF

	
Figure	9:	Behavioral	model	based	on	the	calculated	capacitor	values	and	target	

specifications	

Resultant Behavioral Model:

The behavioral model is shown in Figure	 9 based on the desired architecture, order, and
above calculated capacitor values.
	

14	
	

In	 order	 to	 obtain	 the	 desired	 results,	 you	 need	 to	 consider	 the	 following	
requirements:	
 For the fully differential op‐amp: DC gain > 60dB

 For the fully differential op‐amp: unity gain frequency =~ 10* Sampling Frequency

 For Ts in the simulation file: set to be at least 20 times the op‐amp unity gain

bandwidth

 The time constant of the sampling switched capacitors need to be significantly

greater than Ts (i.e., the time step of the simulator specified in the test.par file). In

particular, the bandwidth 1/(2RC), where R is the resistance of the switch and C is
the capacitor it charges, should be at least 20 times lower than 1/Ts. If this

condition is not met, the simulated kT/C noise of the given switched capacitor

network will generally be lower than its true value, and therefore yield incorrect

noise simulation results.

Given	 the	 above,	 the	previous	 schematic	will	 be	 simulated	using	CppSim	with	 the	
following	specifications:	
	

Parameter Value
Input Signal Frequency 300 Hz

Input Signal Amplitude (Vp-p)(-3dBFS) 0.707 V
Sampling Frequency 1MHz

Fully Diff. Opamp DC gain 90dB
Fully Diff. Opamp unity gain frequency 10MHz

	
	
	
	
	
	

Preliminaries		
	
A.	Opening	Sue2	Schematics		

Click on the Sue2 icon to start Sue2, and then select the
Sigma_delta_ord2_dt_adc_example	library from the schematic	listbox. 	

Select the second_order_dt_sigma_delta_adc	 cell from the above schematic	 listbox.
The Sue2 schematic window should now appear as shown below.
Key signals for this schematic include:
	
up,	un: analog differential input of the  ADC (positive and negative sides respectively)
	
s1p,	 s1n: differential output of the first stage of the  ADC (positive and negative sides
respectively)
	

15	
	

s2p,	 s2n: differential output of the second stage of the  ADC (positive and negative
sides respectively)
	
v: digital output of the  ADC
	
v_filt:	 output	 of	 the	 second	 order	 Butterworth	 filter	 that	 takes	 output	 signal	v	as	
input	
	
p1,	p2:	non‐overlapping	clock	signals	
	
p1b,	p2b:	inverted	version	of	the	non‐overlapping	clock	signals	in	the		ADC	
	
p1v,	p1vb,	p2v,	p2vb:	control	signals	for	switches	in		ADC	
	
vp,	vn:	reference	voltages	for	the	 ADC (positive and negative sides respectively)
	
cm:	common	mode	voltage	of	the	differential	operational	amplifier	

	
	
	
B.	Running	CppSim	Simulations		

In the Sue2 schematic window, click on the Tools text box in the menu bar, and then select
CppSim Simulation. A Run Menu window similar to the one shown below should open
automatically. Note that the Run Menu is already synchronized to the schematic that you
will be simulating (second_order_dt_sigma_delta_adc). If for whatever reason this is
not the case, click on the Synchronize button in the menu bar, the Run Menu will be
synchronized to the schematic in your Sue2 window.

16	
	

	
	
	
To establish the simulation parameters, click on the Edit Sim File button in the menu. An
Emacs window should appear displaying the contents of the simulation parameters file
(test.par). The contents of your test.par file should look something like what is shown
below:

///
// CppSim Sim File: test.par
// Cell: second_order_dt_sigma_delta_adc
// Library: Sigma_delta_ord2_dt_adc_example
///
///
// Number of simulation time steps
// Example: num_sim_steps: 10e3
num_sim_steps: 2e6

// Time step of simulator (in seconds)
// Set to be 20 times the opamp unity gain bandwidth of op-amp
Ts: 1/(20*10e6)

// Output File name
// Example: name below produces test.tr0, test.tr1, ...
// Note: you can decimate, start saving at a given time offset, etc.

17	
	

// -> See pages 34-35 of CppSim manual (i.e., output: section)
output: test end_sample=10e6

// Nodes to be included in Output File
// Example: probe: n0 n1 xi12.n3 xi14.xi12.n0
probe: vin v s1p s2p s1n s2n up un p1 p2 v_filt
//output: test_out trigger=p1 start_time=1e-6
//probe: v
///
// Note: Items below can be kept unaltered if desired
///

// Numerical integration method for electrical schematics
// 1.0: Backward Euler (default)
// 0.0: Trap (more accurate, but prone to ringing)
electrical_integration_damping_factor: 1.0

// Values for global nodes used in schematic
// Example: global_nodes: gnd=0.0 avdd=1.5 dvdd=1.5
global_nodes: gnd = 0.0

// Values for global parameters used in schematic
// Example: global_param: in_gl=92.1 delta_gl=0.0 step_time_gl=100e3*Ts
global_param: ktc_en = 0

// Rerun simulation with different global parameter values
// Example: alter: in_gl = 90:2:98
// See pages 37-38 of CppSim manual (i.e., alter: section)
alter:

When you are finished, you can close the Emacs window by pressing Ctrl-x Ctrl-c. To	
launch	the	simulation,	click	on	the	menu	bar	button	labeled	Compile/Run.
	
Plotting	Time‐Domain	Results		

Double‐click	on	the	CppSimView	icon	to	start	the	CppSim	viewer.	The	viewer	should	
appear	 as	 shown	 below	 –	 notice	 that	 the	 banner	 indicates	 that	 it	 is	 currently	
synchronized	to	the	second_order_dt_sigma_delta_adc	 cellview.	 	 If	 this	 is	not	 the	
case,	 Sue2	and	CppSimView	can	be	 synchronized	by	 clicking	 the	Synch	 button	on	
the	left‐hand	side	of	the	CppSimView	window.	
	

18	
	

	
	
To	view	the	simulation	results,	first	click	on	the	radio	button	titled	No	Output	File.		
Immediately	 after	 this	 button	 is	 clicked,	 the	 radio	 button	will	 instead	 display	 the	
output	file’s	name,	test.tr0.	 	Next,	click	on	the	Load	button	on	the	left‐hand	side	of	
the	CppSimView	window.		Once	this	button	is	pressed,	the	Nodes	radio	button	will	
be	filled	in,	and	the	probed	nodes	will	be	listed,	as	shown	below.						
	

	
	
A.	Output	Signal	Plots		
The input data is up-un is at frequency of 300Hz with a Vp-p of 0.707V. The clock signals
p1, p2 are at frequency of 1MHz. To view the important signals you can select their names
from the window as shown below. Note that you can use a comma to plot signals on the
same subplot (as done for signals p1 and p2 in the example below), and operators such as
minus in order to plot the difference in signals (as done for signals s1p-s1n and s2p-s2n in
the example below).
	

19	
	

To change the x-axis of the figure (the y-axis automatically scales), hit the Zoom	 radio
button on the CppSimView menu-bar. This will cause a series of buttons to appear on the
top and bottom of the plot window, as shown below.

20	
	

	
	

	
Next click the (Z)oom	 X	 push-button located at the top of the plot window. Select the
desired x-axis range by clicking at the beginning and ending location in any of the plotted
signals. The figure will look similar to the figure below. Additionally, you can zoom in and
out and pan left and right using the In	and Out	and the <	and >	push-buttons, respectively,
located at the top of the plot figure. 	

21	
	

	
	
Since	we	placed	a	second	order	Butterworth	low	pass	filter	at	the	output	we	are	able	
to	examine	the	filtered	version	of	the	output,	v_filt,	and	compare	to	the	input,	vin,	as	
shown	in	the	figure	below.	
	

22	
	

	
	
B.	Matlab	Verification	of	Output	Spectrum	
	
For	this	exercise	we	leverage	the	Matlab	toolbox	“Hspice	Toolbox	for	Matlab	and	
Octave”	 which	 is	 part	 of	 the	 CppSim	 package.	 Hspice	 Toolbox	 for	 Matlab®	 and	
Octave	is	a	collection	of	Matlab®/Octave	routines	that	allow	the	user	to	manipulate	
and	view	signals	generated	by	Hspice,	Ngspice,	and	CppSim	simulations.		
	
To	verify	the	performance	of	the	simulated	“second_order_dt_sigma_delta_adc”,	you	
need	 to	 run	 the	 simulation	 for	 a	 longer	 duration	 using	 the	 simulation	 file	 below.	
After	the	completion	of	this	step,	“test_out.tr0”	file	will	be	generated	in	the	following	
directory:		
	
C:\CppSim\SimRuns\Sigma_delta_ord2_dt_adc_example\second_order_dt_sigma_de
lta_adc		
	
	
For	the	verification	of	PSD	plots	and	SNR	value,	we	will	run	the	Matlab	verification	
code	shown	in	Appendix	B	as	“calculate_snr.m”	file.	which	is	also	located	inside	the	
above	directory.		Running	this	script	within	the	Matlab	environment	then	generates	
the	PSD	plots	and	calculates	the	corresponding	SNR	value.	However,	we	first	need	to	
generate	the	“test_out.tr0”	file,	which	is	achieved	by	updating	the	simulation	file	as	
shown	below	(with	changes	in	red)	and	then	re‐running	CppSim.	

23	
	

///
// CppSim Sim File: test.par
// Cell: second_order_dt_sigma_delta_adc
// Library: Sigma_delta_ord2_dt_adc_example
///
///
// Number of simulation time steps
// Example: num_sim_steps: 10e3
num_sim_steps: 50e6

// Time step of simulator (in seconds)
// Set to be 20 times the opamp unity gain bandwidth of 10MHz
Ts: 1/(20*10e6)

// Output File name
// Example: name below produces test.tr0, test.tr1, ...
// Note: you can decimate, start saving at a given time offset, etc.
// -> See pages 34-35 of CppSim manual (i.e., output: section)
//output: test end_sample=10e6

// Nodes to be included in Output File
// Example: probe: n0 n1 xi12.n3 xi14.xi12.n0
//probe: vin v s1p s2p s1n s2n up un p1 p2 v_filt
output: test_out trigger=p1 start_time=1e-6
probe: v
///
// Note: Items below can be kept unaltered if desired
///

// Numerical integration method for electrical schematics
// 1.0: Backward Euler (default)
// 0.0: Trap (more accurate, but prone to ringing)
electrical_integration_damping_factor: 1.0

// Values for global nodes used in schematic
// Example: global_nodes: gnd=0.0 avdd=1.5 dvdd=1.5
global_nodes: gnd = 0.0

// Values for global parameters used in schematic
// Example: global_param: in_gl=92.1 delta_gl=0.0 step_time_gl=100e3*Ts
global_param: ktc_en = 0

// Rerun simulation with different global parameter values
// Example: alter: in_gl = 90:2:98
// See pages 37-38 of CppSim manual (i.e., alter: section)

	
	
	
	
	
	
	
	
	

24	
	

Results:	Output	PSD	and	SNR	
	
After	 running	 CppSim	 with	 the	 updated	 simulation	 file,	 run	 the	 Matlab	 script	
“calculate_snr.m”	within	the	above	directory	to	see	the	plots	shown	below.	Figure	10	
shows	the	output	power	spectra	density	where	the	SNR	is	101.5dB,	which	is	within	
0.5dB	of	the	matlab	simulations	under	the	same	conditions.		
	
CppSim	 provides	 a	 feature	 that	 allows	 for	 noise	 simulation	 to	 account	 for	 the	
thermal	noise	introduced	by	the	switches	which	manifests	itself	in	the	form	of	KT/C	
noise.	 This	 is	 accomplished	 by	 setting	 the	 global	 parameter	 ktc_en	 to	 1	 in	 the	
“test.par”	file.	More	generally	this	is	achieved	by	setting	the	noise_enable	parameter	
to	one	in	the	cell	electrical_switch	from	the	library	Electrical_Examples.		
	
The	resulting	power	spectral	density	 is	shown	in	Figure	11	where	the	SNR	is	now	
98.4dB.	 If	we	consider	 that	 the	3rd	harmonic	 is	 ‐102.6	dBFS,	we	calculate	 the	SNR	
excluding	 the	 3rd	 harmonic	 to	 be	 100dB	 which	 agrees	 with	 our	 theoretical	
calculations.			

	 	
	

Figure	10	CppSim	behavioral	simulation	of	the		modulator	produces	a	101.5dB	SNR	and	a	3rd	
harmonic	at	‐102	dBFS.		

10
1

10
2

10
3

10
4

10
5

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0
CppSim Output PSD

Frequency (Hz)

d
B

F
S

/N
B

W

SNR = 101.5dB
3rd harmonic = -102.0dBFS

25	
	

	
	

Figure	11	CppSim	simulation	with	KT/C	noise	enabled	produces	a	SNR	equal	to	98.4dB	

Conclusion		
	
This tutorial covers the basic issues related to the behavioral simulation of a simple Second
Order Discrete Time Delta Sigma ADC design example using CppSim and Matlab. In
particular, the reader has been introduced to the tasks of running CppSim simulations,
plotting output signals as well as performing Matlab synthesis and verifications. Finally,
the agreement of SNR values between the initial Matlab synthesis and final CppSim
simulation results of the design example has been verified which reflects the importance of
CppSim in simulating and understanding the behavior of Delta Sigma ADCs.	
	
	

References		

1- Understanding Delta-Sigma Data Converters, Richard Schreier & Gabor C. Temes
2- “EXAMPLE DESIGN– PART 1”, Lecture 3, Richard Schreier & Trevor Caldwell,

ECE1371 Advanced Analog Circuits,
http://individual.utoronto.ca/schreier/lectures/2012/3-2.pdf

3- Wern Ming Koe; Jing Zhang; , "Understanding the effect of circuit non-idealities on
sigma-delta modulator," Behavioral Modeling and Simulation, 2002. BMAS 2002.
Proceedings of the 2002 IEEE International Workshop on , vol., no., pp. 94- 101, 6-8
Oct. 2002
URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1291065&isnumber=28751

	
	

10
1

10
2

10
3

10
4

10
5

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0
CppSim Output PSD

Frequency (Hz)

d
B

F
S

/N
B

W

SNR = 98.4dB
3rd harmonic = -102.6dBFS

26	
	

Appendix	A:	Matlab	Synthesis	Code	
	
clear all;
addpath('C:\Program Files\MATLAB\R2012b\toolbox\delsig')

%---
% Design Parameters

order = 2; % Filter order
OSR = 500; % OSR
Fs = 1e6; % Sampling Frequency
N = 100e3; % Number of Points
opt = 0; % Optimization (=1 for odd order)
H_inf = 1.5; % Maximum out of band gain of NTF, should be less than 2
f0 = 0; % Lowpass design
form = 'CRFB'; % Cascaded Resonator, Feed Back with delaying element
nlev = 2; % Quantization Levels
fs = 1; % Normalized Sampling Frequency

In_FS = sqrt(2); % Full-Scale Input
SNR_target = 100; % 100dB SNR target for full-scale input

%---
% Synthesis and Dynamic Range Scaling

% Noise Transfer Function
ntf = synthesizeNTF(order,OSR,opt,H_inf,f0);

% CRFBD model, coefficients realization
[a,g,b,c] = realizeNTF(ntf,form);

% ABCD matrix calculation
ABCD = stuffABCD(a,g,b,c,form);

% Scale the state variable maximum to 0.707
[ABCDs,umax] = scaleABCD(ABCD,nlev,0.707);

% Noise and signal transfer function
[ntf2,stf] = calculateTF(ABCD,1);

% Generate CRFB Coefficients
[a_s,g_s,b_s,c_s] = mapABCD(ABCDs,form);
b_s(2:3)=0; % This step simplifies how the input is applied to the DSM

%---
% Simulate Full Scale Input at Frequency 30*Fs/N

t = [0:(N-1)]/Fs;
u = In_FS/2 * sin(t*2*pi*Fs/N*30);
%Simulate the output
[v,xn,xmax,y] = simulateDSM(u,ABCDs,nlev);

%Plotting
figure(1)

27	
	

plot(t,v,'LineWidth',1); hold on
plot(t,u,'r','LineWidth',3); hold off
xlim([0.001 0.0025])
ylim([-1.5 1.5])
title('Time Domain Signal Response','Fontsize',12);
xlabel('Time (sec)','Fontsize',12);
ylabel('Amplitude(V)','Fontsize',12);
legend('Output Signal','Input Signal');
grid on
print -dtiff 'figures/matlab_uv'
print -dmeta 'figures/matlab_uv'
xlim([0.0015 0.0016])
print -dtiff 'figures/matlab_uv_zoom'
print -dmeta 'figures/matlab_uv_zoom'

figure(2)
plot(t,xn(1,:),t,xn(2,:),'LineWidth',1);
xlim([0 0.02])
ylim([-1.0 1.0])
title('Time Domain Signal Response','Fontsize',12);
xlabel('Time (sec)','Fontsize',12);
ylabel('Amplitude(V)','Fontsize',12);
legend('x1','x2');
grid on
print -dtiff 'figures/matlab_x1x2'
print -dmeta 'figures/matlab_x1x2'

%---
% Output PSD and SNR

wind_hann = hann(N,'periodic'); % Hanning Window
v_hann = v .* wind_hann'; % Windowed Input

% Sin-wave scaled PSD (see page 372 in Schreier and Temes)
S_vv = (abs(fft(v_hann,N) / ((sum(wind_hann) * In_FS/4)))).^2;

%Calculating SNR
signal_bins = find(S_vv > max(S_vv)/4.1);
signal_power = sum(S_vv(signal_bins));
noise_power = 2*sum(S_vv(1:length(S_vv)/2/OSR)) - signal_power;
snr_value = 10*log10(signal_power/noise_power)
hd3 = 10*log10(abs(S_vv(signal_bins(2)*3-2)))

%Frequency axis
f = Fs/2*linspace(0,1,N/2);

figure(3)
clf
semilogx(f,10*log10(S_vv(1:N/2)),'b','LineWidth',2)
xlim([10 500e3])
ylim([-200 0])
title('Output PSD','Fontsize',12);
xlabel('Frequency (Hz)','Fontsize',12);
ylabel('dBFS/NBW','Fontsize',12);
text(3e3,-160,sprintf('SNR = %4.1fdB\n',snr_value))

28	
	

text(3e3,-170,sprintf('3rd harmonic = %4.1fdBFS\n',hd3))
print -dtiff 'figures/matlab_psd'
print -dmeta 'figures/matlab_psd'

%---
% Simulate SNR vs Input Amplitude
[snr,amp] = simulateSNR(ntf,OSR,[-120:20:-20
-10:-2],f0,nlev,1/(4*OSR),13);
[snr2,amp2] = predictSNR(ntf,OSR);

figure(4)
plot(amp,snr,'ro','linewidth',2); hold on
plot(amp2,snr2,'k-x','linewidth',2); hold off
title('SNR vs Amplitude','Fontsize',12);
xlabel('Input Level (dB)','Fontsize',12);
ylabel('SNR (dB)','Fontsize',12);
legend('Simulated SNR','Predicted SNR','Location','Best');
grid on
text(-99,105,sprintf('peak SNR = %4.1fdB\n',max(snr)))
print -dtiff 'figures/matlab_snr_vs_amp'
print -dmeta 'figures/matlab_snr_vs_amp'

figure(5)
%plotPZ(ntf,'r')
plot(real(ntf.p{:}),imag(ntf.p{:}),'Xk','Markersize',12,'linewidth',2);
hold on
plot(real(ntf.z{:}),imag(ntf.z{:}),'Or','Markersize',12,'linewidth',2)
plot(exp(j*2*pi*[0:0.01:1]),'linewidth',2)
axis([-1.2 1.2 -1 1])
title('NTF Pole-Zero Plot','Fontsize',12);
print -dtiff 'figures/matlab_pz'
print -dmeta 'figures/matlab_pz'

%---
% Compute Capacitor Values

k = 1.38e-23; % Boltzman's constant (J/K)
T = 300; % Temperature in Kelvin (K)

Cin = 4*k*T/((In_FS/2)^2/2/10^(SNR_target/10)) / OSR
C1f = Cin/a_s(1)
C2in = 10e-15
C2f = C2in/c_s(1)
C2dac = C2f*a_s(2)
	
%Cin = 1.33e-12
%C1f = 2.7303e-12
%C2f = 3.2901e-14
%C2dac = 1.2524e-15

	
	
	

	

29	
	

Appendix	B:	Matlab	Verification	Code	(calculate_snr.m)	
	
clear;
% Include HspiceToolbox
if ispc ==1
 addpath('c:\CppSim\CppSimShared\HspiceToolbox\');
else
 addpath('~/CppSim/CppSimShared/HspiceToolbox');
end

cd
C:\CppSim\SimRuns\Sigma_delta_ord2_dt_adc_example\second_order_dt_sigma
_delta_adc

%---
% Input Parameters

N = 1e5; % Number of points for FFT
Fs = 1e6; % Sampling frequency
fin = 1e3; % Input signal bandwidth
OSR = Fs/2/fin; % Oversampling ratio
OSR = 500; % Oversampling ratio
In_FS = sqrt(2); % Input full-scale
f = Fs/2*linspace(0,1,N/2); % Frequency axis

%---
% Load simulation results

% Load the simulation file
x = loadsig_cppsim('test_out.tr0');
%x = loadsig_cppsim('test.tr0');

% Extract the output signal v
vl = evalsig(x,'v');
v = vl(length(vl)-N+1:length(vl))';

%---
% Output PSD and SNR

wind_hann = hann(N,'periodic'); % Hanning Window
v_hann = v .* wind_hann'; % Windowed Input

% Sin-wave scaled PSD (see page 372 in Schreier and Temes)
S_vv = (abs(fft(v_hann,N)) / ((sum(wind_hann) * In_FS/4))) .^2;

%Calculating SNR
signal_bins = find(S_vv > max(S_vv)/4.1);
signal_power = sum(S_vv(signal_bins));
noise_power = 2*sum(S_vv(1:length(S_vv)/2/OSR)) - signal_power;
snr_value = 10*log10(signal_power/noise_power)
hd3 = 10*log10(abs(S_vv(signal_bins(2)*3-2)))

%Frequency axis
f = Fs/2*linspace(0,1,N/2);

30	
	

figure(3)
clf
semilogx(f,10*log10(S_vv(1:N/2)),'LineWidth',2)
axis([10 500e3 -200 0])
title('CppSim Output PSD','Fontsize',12);
xlabel('Frequency (Hz)','Fontsize',12);
ylabel('dBFS/NBW','Fontsize',12);
text(3e3,-160,sprintf('SNR = %4.1fdB\n',snr_value))
text(3e3,-170,sprintf('3rd harmonic = %4.1fdBFS\n',hd3))
print -dtiff 'figures/cppsim_psd'
print -dmeta 'figures/cppsim_psd'

	

