
 1

Behavioral Simulation of a High Speed Limit Amplifier
with Fast Offset Compensation Using CppSim and the PLL

Design Assistant Programs

Ethan Crain and Michael Perrott
http://www-mtl.mit.edu/research/perrottgroup/

July 13, 2008

Copyright © 2004-2008 by Ethan Crain and Michael Perrott

All rights reserved.

Table of Contents

Setup...2
Introduction..4

A. Limit Amplifier Architecture ..5
B. System Architecture ..5

Preliminaries ..7
A. Opening Sue2 Schematics...7
B. Running CppSim Simulation...9

Plotting Time-Domain Results...10
A. Output signal plots ..10
B. Output signal Eye Diagrams..13

Plotting Frequency Domain Results ..14
A. RMS Jitter ...14

Examining Nonidealities..15
A. Intersymbol Interference (ISI)...15
B. Limit Amplifier Noise ...20
C. Amplifier Non-Linearity ...26
Amplifier non-linearity can influence the offset compensation. Ultimately, non-linearities in the
amplifier transfer function can translate to residual output-referred offset. Therefore, we must consider
it in this model. To explore this affect: ...26
E. Input Amplitude...27
F. Feedback Noise and Offset ..27

Design Overview of the Offset Compensation Loop...31
Key parameters of the limit amplifier and feedback path include: ..31
A. Modeling ...31
B. Determining System Parameters with PLL Design Assistant ...32

Comparison of Simulated and Measured Results ..34
Conclusion ...36

 2

Setup

Download and install the CppSim Version 3 package (i.e., download and run the self-extracting file
named setup_cppsim3.exe) located at:

http://www.cppsim.com

Upon completion of the installation, you will see icons on the Windows desktop corresponding to the PLL
Design Assistant, CppSimView, and Sue2. Please read the “CppSim (Version 3) Primer” document,
which is also at the same web address, to become acquainted with CppSim and its various components.
You should also read the manual “PLL Design Using the PLL Design Assistant Program”, which is
located at http://www.cppsim.com, to obtain more information about the PLL Design Assistant as it is
briefly used in this document.

To run this tutorial, you will also need to download the file offset_comp_example.tar.gz available at
http://www.cppsim.com, and place it in the Import_Export directory of CppSim (assumed to be
c:/CppSim/Import_Export). Once you do so, start up Sue2 by clicking on its icon, and then click on
Tools->Library Manager as shown in the figure below.

In the CppSim Library Manager window that appears, click on the Import Library Tool button as
shown in the figure below.

 3

In the Import CppSim Library window that appears, change the Destination Library to
Offset_Comp_Example, click on the Source File/Library labeled as offset_comp_example.tar.gz, and
then press the Import button as shown in the figure below. Note that if offset_comp_example.tar.gz
does not appear as an option in the Source File/Library selection listbox, then you need to place this file
(downloaded from http://www.cppsim.com) in the c:/CppSim/Import_Export directory.

 4

Once you have completed the above steps, restart Sue2 as directed in the above figure.

Introduction

Most significant improvements in performance in increasingly complex communications systems will
arise from architectural innovations. These innovations are only possible you can quickly and accurately
model and simulate the system under consideration. CppSim, initially designed for simulating phase-
locked loops, is a free behavioral simulation package that leverages the C++ language to allow very fast
simulation of a wide array of system types. The goal of this tutorial is to expose the reader to a non-PLL
based system where modeling with CppSim and the PLL Design Assistant tools enabled an architectural
innovation that produces dramatic improvements in performance.

This document explores a fast offset compensation design for use in high gain amplifiers that was
presented in [1]. High gain amplifiers require offset compensation to achieve high input sensitivity and
low output jitter. Traditional offset compensation designs use a low-pass filter connected in feedback
between the amplifier output and its input. Unfortunately, this approach suffers from an undesirable
tradeoff between offset compensation settling time and output jitter – a higher compensation bandwidth
has the benefit of achieving faster settling time at the expense of higher data dependent jitter. Therefore,
current high-speed data-links suffer from extremely long offset settling times in order to satisfy the strict
protocol jitter specifications. This tutorial examines the design and operation of a new offset
compensation design that dramatically alters the relationship between output jitter and settling time.

1 E. A. Crain, M. H. Perrott, ‘A 3.125Gb/s Limit Amplifier with 42dB Gain and 1μS Offset Compensation in 0.18μm CMOS,’
IEEE ISSCC Feb. 2005.

 5

A. Limit Amplifier Architecture

The main amplifier is implemented as a cascaded multi-stage limit amplifier to achieve a high gain-
bandwidth product [2]. The number of stages selected is a compromise between the conflicting desires
for high gain and bandwidth and low power dissipation and input referred noise. Figure 1 shows the top
level of the limit amplifier design. The individual stages of the limit amplifier could be implemented in a
variety of ways but the resistor-loaded differential pair topology is very amenable to high-speed
operation.

Vin
VoutAv Av Av Av Av Av Av

Figure 1: Top level schematic of the limit amplifier.

B. System Architecture

The simplified system architecture of the limit amplifier and new offset compensation is shown in Figure
2. The feed-forward path, which is the data path, consists of a high-speed limit amplifier. The feedback
path, which implements the offset compensation, consists of a peak detector followed by an integrator.

+

-

In OutAmp

Vcontrol

Peak

Detector

Figure 2: Simplified system architecture.

2 M. H. Perrott, www-mtl.mit.edu/~perrott/ - Link to 6.976 Open Course Ware site, Lecture 6, pp. 21-25.

 6

Av AvAv

Analog Mux

and

Select Logic

OutIn

Peak

Detector

Peak

Detector

Peak

Detector

-

-

Av Av Av

Figure 3: Offset block architecture.

 7

Preliminaries

A. Opening Sue2 Schematics

• Click on the Sue2 icon to start Sue2, and then select the Offset_Comp_Example library from the
schematic listbox. The schematic listbox should now look as follows:

• Select the offset_comp_top cell from the above schematic listbox. The Sue2 schematic window
should now appear as shown below. Key signals for this schematic include

o in and inb: limit amplifier differential input signals
o out and outb: limit amplifier differential output signals
o package and packageb: differential signals at the output of the package model
o cont and contb: differential control signals for the offset compensation

 8

• Select the offset_comp_limitamp icon within the above schematic, and then press e to descend

down into its associated schematic. You should now see the schematic shown below. The cell
elem_to_vec_8 allows for buses in vector form. Some key signals in the limit amplifier schematic
include:

o in and inb: the differential inputs to the limit amplifier
o vec_out and vec_outb: vectors for the differential output signals of all amplifier stages

 9

• Select the offset_comp_fb icon within the top level schematic, and then press e to descend down
into its associated schematic. You should now see the schematic shown below. Some key signals
in the feedback schematic include

o vec_peak and vec_peakb: vectors for the differential output signals of all peak detector
outputs

o pdout and pdoutb: differential output signals of peak detector that is active in the
compensation loop

o vec_control and vecint_control: vectors for the peak detector select logic control signals
and integrator control signals

• Press Ctrl-e to return to the offset_comp_top cellview.

B. Running CppSim Simulation

• Within the Sue2 window, select Tools CppSim Simulation. You should see the Cppsim Run
Menu that pops up. Left click on the Edit Sim File button, and an Emacs window should pop up.
Now open CppSimView and make sure it synchronizes to your new schematic. If not, left-click
the Synch button on the CppSimView window to do it.

 10

• Within the Emacs window, indicates that num_sim_steps is set to 10.0e4 and Ts is set to 1/50e9.
The sample rate, 1/Ts, is set to at least 10 times that of the highest frequency in the simulation.
You may then close the Emacs window if you like (cntl-x cntl-c).

• Click on the Compile/Run button to run the simulation.
• Click on the No Output File radio button and select test.tr0 as the output file.
• Click on the No Nodes radio button to load in the simulated signals. CppSimView should now

appear as shown below

Plotting Time-Domain Results

A. Output signal plots

• The input data is a 2.5mVpp PRBS data stream at 2.5Gb/s.
• In the CppSimView window, double-click on signals in and out. You should see plots of the limit

amplifier input and output waveforms as shown below:

 11

• Now click on the Reset Node List button in the CppSimView window, and then double-click on
signals out, package and cont. You should see plots of the amplifier output before and after the
package model and the feedback control signal as shown below:

 12

• To change the x-axis of the figure (the y-axis automatically scales), hit the Zoom radio button on
the CppSimView menu-bar, as highlighted in the figure below:

• Next, click the (Z)oom X push-button located at the top of the plot figure. Select the desired x-
axis range by clicking at the beginning and ending location in any of the plotted signals. The
figure will look similar to the figure below. Additionally, you can zoom in and out and pan left
and right using the In and Out and the < and > push-buttons, respectively, located at the top of the
plot figure.

 13

B. Output signal Eye Diagrams

• Click on the plotsig(…) radio button in CppSimView and then select the eyesig(…) function. Set
period to be 1.2e-9 (i.e., three symbols long for the output signal waveforms – note that the signal
waveforms have twice the symbol period as the instantaneous frequency waveform since they are
NRZ signals) and start_off to be 1.0e-6 (i.e., 1 microsecond, which is long enough for the offset
compensation to settle). Hit Return to enter the function into the CppSimView function list.
CppSimView should now appear as shown below.

• Clock on the nodes radio button, and then double-click on signal out and then on signal package.
The eye diagrams of the ideal limit amplifier output signals before and after the package model
should appear as shown below.

 14

Plotting Frequency Domain Results

A. RMS Jitter

Now perform the following operations in CppSimView:

• Click on the test.tr0 radio button and then choose the output file to be test_jitter.tr0.
• Click on the eyesig(…) radio button and then choose the plotting function to be

plot_pll_jitter(…). Set the ref_timing_node parameter to edge_ref (this is the interpolated
reference clock output signal) and the start_edge to 1. Hit Return to enter the values into the
CppSimView function list. CppSimView should appear as shown below.

 15

• Click on the No Nodes radio button, and then double-click on edge_clk and edge_package. A
plot of the instantaneous phase for the limit amplifier output both before and after the package
model should appear, as shown below. The RMS jitter for each signal, in units of mUI (i.e. UI is
unit interval, or one data period), is indicated in the legend of each signal.

• The resulting RMS jitter for the limit amplifier output signal, out, is 1.24pS, or 3.10mUI.
• The resulting RMS jitter for the limit amplifier output after the package model, package, is

1.06pS, or 2.65mUI. (Note: the number of time steps was increased from 10e4 to 50e4 to show
that the phase error does settle).

Examining Nonidealities

A. Intersymbol Interference (ISI)

Let us first examine the influence of inter-symbol interference on the output jitter of the limit amplifier.
For the initial design, we considered a 2.5Gb/s PRBS input data stream. The minimum amplifier
bandwidth (-3dB roll-off frequency) to achieve acceptable data-dependent jitter is approximately 3.0GHz.
From above, the RMS jitter is 743fS, or 1.86mUI, at the output of the package model. From page 207 of
[3], the required bandwidth per stage of the limit amplifier is:

3 Lee, Thomas H. The Design of CMOS Radio-Frequency Integrated Circuits, New York, NY: Cambridge University Press,
1998.

 16

12
1

,3,3 −⋅= −−
n

stagedBtotdB ff

where totdBf ,3− is the cumulative -3dB roll-off frequency of the entire limit amplifier and stagedBf ,3− is the -
3dB roll-off frequency of each stage. Solving for stagedBf ,3− :

12
1

,3
,3

−
= −

−
n

totdB
stagedB

f
f

Since totdBf ,3− equals 3.0GHz and n equals 7, stagedBf ,3− is approximately 9.3GHz. We will now increase
the data rate to 5.0Gb/s without changing the bandwidth of the amplifier.

• Click on Edit Sim File radio button in the CppSim Run Menu window.
• Change num_sim_steps to 20.0e4 and Ts is set to 1/100e9. You may then close the Emacs

window if you like (cntl-x cntl-c).
• Double click on the offset_comp_input symbol in Sue2 and change datarate to 5.0e9.
• Either type Ctrl-S or click on File->Save in Sue2 to save the changes.

• Click on the Compile/Run button to run the CppSim simulation.
• Click on the test_jitter.tr0 radio button and change the output file to test.tr0.
• Click on the plot_pll_jitter(…) radio button and change the plotting function to be plot(…).
• Click on the No Nodes radio button and double click on out, package and cont as shown below.

 17

• You should see plots of the amplifier output before and after the package model and the feedback
control signal as shown below:

• Next, click on the plot(…) radio button and change the plotting function to be eyesig(…).
• Set period to be 0.6e-9 and start_off to be 1.0e-6. Hit Return to enter the function into the

CppSimView function list and click on the nodes radio button to load in the simulation signals.
CppSimView should now appear as shown below:

 18

• Double-click on the out and package signals to plot their corresponding eye diagrams, which
should appear as shown below.

• Comparison of the above eye diagrams to previous ones plotted with a 2.5Gb/s data rate reveals
the impact of inter-symbol interference that occurs if the bandwidth is too low. You might
consider setting the ampbw parameter of the offset_comp_limitamp to different values and
observe the corresponding impact on the eye diagrams.

Bandwidth enhancements can be gained by using some combination of shunt and/or series peaking and
neutralization – essentially by adding a zero to the transfer function of the limit amplifier base cells. Each
stage of the limit amplifier is modeled as a gain with a single pole:

 19

pf
s

AsH

⋅
+

=

π2
1

)(

The bandwidth enhancement techniques change the transfer function to:

zpp

z
enhanced

ff
s

f
s

f
sA

sH

⋅
+

⋅
+

⋅
+⋅

=

2

2

)2(2
1

)
2

1(
)(

ππ

π

Introducing the parameter pz ffm = , the transfer function H(s) can be rewritten as:

22

2

)2(2
1

)
2

1(
)(

pp

p
enhanced

fm
s

f
s

fm
sA

sH

⋅⋅
+

⋅
+

⋅⋅
+⋅

=

ππ

π

As m goes to infinite enahancedsH)(reduces to the original form of)(sH . The maximum bandwidth
(bandwidth increased by ~1.85x) is achieved for m ~ 1.41 while a maximally flat response (bandwidth
increased by ~ 1.72x) is achieved for m = 2.41. Refer to [1] for more information.

• Double click on the offset_comp_limitamp symbol in Sue2 and change m to 3.10.
• Either type Ctrl-S or click on File->Save in Sue2 to save the changes.
• Click on the Compile/Run button to run the simulation.
• Plot eye diagrams of the signals, out and package, again by clicking on Load and Replot button.

• The eye diagrams should appear as below.

 20

• Comparison of the above eye diagrams to the first ones plotted with a 5.0Gb/s data rate reveals
that the enhancement technique has dramatically improved the inter-symbol interference because
by increasing the bandwidth by 1.6x (the normalized peak frequency response for m = 3.10 is 1.0
with minimum group delay). Peaking in the package output is due to the large bondwire
inductance.

• The reader is encouraged to investigate the affect of further decreasing m on the quality of the eye
diagrams.

B. Limit Amplifier Noise

A significant non-ideality that the simulations have ignored to this point is noise. Let’s now examine the
affect of noise on the performance of the limit amplifier.

• Click on the Edit Sim File radio button in the CppSim Run Menu.
• Change num_sim_steps to 10.0e4 and Ts is set to 1/50e9. You may then close the Emacs window

if you like (cntl-x cntl-c).
• Double click on the offset_comp_input symbol in Sue2 and change datarate to 2.5e9.
• Double click on the offset_comp_limitamp symbol in Sue2 and change m to 1.0e6.
• Double click each of the noise blocks in the Noise Model block and change var, the input referred

noise variance, to HzVe /25.6 218− . This is equivalent to a standard deviation of HznV /5.2 .
• Either type Ctrl-S or click on File->Save in Sue2 to save the changes.

 21

• Click on the Compile/Run button to run the simulation.
• Click on the No Output File radio button and select test.tr0 as the output file.
• Click on the eyesig(…) radio button and change the plotting function to be plotsig(…).
• Click on the No Nodes radio button and double click on out, package and cont as shown:

• You should see plots of the amplifier output before and after the package model and the feedback
control signal as shown below. Notice that the noise does not significantly change the offset
compensation settling behavior.

 22

• Next, click on the plot(..) radio button and change the plotting fuction to eyesig(…).
• Change period to 1.2e-9 and start_off to 1.0e-6 and hit Return.
• Click on the nodes radio button. The CppSimView window should appear as shown below:

• Double click on out and package to plot eye diagrams of these signals. The eye diagrams of the
limit amplifier output signals with input referred noise added before and after the package model
should appear as shown below.

 23

• Comparison of the above eye diagrams to the first ones plotted with a 2.5Gb/s data rate reveals
that the noise severely degrades the quality of the eye diagram. To reinforce this, let’s examine
the RMS jitter of the two output signals and compare to the previous result without noise.

• Click on the test.tr0 radio button and then choose the output file to be test_jitter.tr0.
• Click on the eyesig(…) radio button and choose the plotting function to be plot_pll_jitter(…).

Set ref_timing_node to edge_ref and start_edge to 1. Hit Return to enter the values into the
CppSimView function list. CppSimView should appear as shown below.

• Click on the No Nodes radio button, and then double-click on edge_clk and edge_package. A
plot of the instantaneous phase for the limit amplifier output both before and after the package

 24

model should appear, as shown below. The RMS jitter for each signal is indicated in the legend of
each signal.

• The RMS jitter of the limit amplifier before and after the package model is 8.82ps and 8.10ps,
respectively, compared to 1.24ps and 1.06ps when noise is neglected. Noise severely limits the
input sensitivity of the amplifier.

• We can show that the input sensitivity of the amplifier is roughly 5mV if we are to meet the OC48
jitter specifications (<4ps(rms) at 2.5Gb/s) in the eye diagrams and jitter plots below.

 25

 26

C. Amplifier Non-Linearity

Amplifier non-linearity can influence the offset compensation. Ultimately, non-linearities in the amplifier
transfer function can translate to residual output-referred offset. Therefore, we must consider it in this
model. To explore this affect:

• Within Sue2, left-click on the offset_comp_limitamp block, and press e to push into the lower
level. You should see the seven-stage limiting amplifier now. Double-click on the
offset_comp_amp block and then click on the Edit CppSim Code button. An Emacs window
including the CppSim code for this block should pop up (shown below).

• The Amp class definitions amp1 and amp2 have polynomial expressions that define the DC
transfer function of the limit amplifier base cell. If the coefficients of the higher order terms are
zero then the transfer function is ideally linear. However, if the coefficients are non-zero then the
transfer function will have some degree of non-linearity. The coefficients for the higher order
terms can be determined by measuring the transfer function of the actual circuit in HSPICE and
fitting a curve with MATLAB. Change the variables A1/B1 and A2/B2 in classes amp1 and amp2
from 0 to 0.6 and -3.3 as shown below.

module: offset_comp_amp
parameters: double bw double m double gain double offset double min double max
inputs: double in double inb
outputs: double out double outb
classes:
 Amp amp1("offset/2-gain*a+A1*a^2+A2*a^3","offset,gain,Min,Max,A1,A2",
offset,gain,min,max,0.6,-3.3);
 Amp amp2("-offset/2-gain*b+B1*b^2+B2*b^3","offset,gain,Min,Max,B1,B2",
offset,gain,min,max,0.6,-3.3);
 Filter filt1("1 + 1/(2*pi*fz)*s","1 + 1/(2*pi*fp)*s + 1/(fp*fz*(2*pi)^2)*s^2"
,"fp,fz,Ts",bw,m*bw,Ts);
 Filter filt2("1 + 1/(2*pi*fz)*s","1 + 1/(2*pi*fp)*s + 1/(fp*fz*(2*pi)^2)*s^2"
,"fp,fz,Ts",bw,m*bw,Ts);
 Filter filt3("1","1 + 1/(2*pi*fp)*s","fp,Ts",10*bw,Ts);
 Filter filt4("1","1 + 1/(2*pi*fp)*s","fp,Ts",10*bw,Ts);
static_variables:
init:
code:
 amp1.inp(in);
 amp2.inp(inb);
 filt1.inp(amp1.out);
 filt2.inp(amp2.out);
 filt3.inp(filt1.out);
 filt4.inp(filt2.out);
 out = filt3.out;
 outb = filt4.out;

• Change the input-referred offset (inputoffset) and noise (var) to zero, increase the input amplitude

(inputamp) to 5.0mV and plot the eye diagrams for out and package.

 27

• The eye diagrams demonstrate that the non-linearity can produce a non-zero residual output
referred offset voltage even when the offset of the limit amplifier is zero.

E. Input Amplitude

The offset compensation uses multiple control loops to account for large input amplitudes and large input-
referred offsets. Compensation will occur from the last unsaturated output and all control loops have the
same gain and bandwidth so that the loop dynamics are the same regardless of the input conditions. The
reader can confirm that the loop dynamics, specifically the compensation settling time, are constant for all
input amplitudes and input offset amplitudes by using the alter command in the Sim file. After adding the
variable inputamp to the offset_comp_input block in the top level, the Sim file syntax to sweep the
input amplitude from 5mV to 25mV using a 5mV step is:

 alter:
 inputamp = 5e-3:5e-3:25e-3

This can also be done to explore the impact of changing the input-referred offset voltage.

F. Feedback Noise and Offset

There is a significant difference between how the noise and offset introduced by the forward path and that
introduced by the feedback path affect the input sensitivity of the amplifier. The noise of each amplifier
stage in the forward path is referred to the amplifier input by dividing it by the gain of preceding stages.
Therefore, the noise performance of the first several amplifier stages dominates the noise performance.
Similarly, the noise introduced by the feedback path is referred to the amplifier input through the gain of

 28

the entire main amplifier and is therefore greatly attenuated. The noise performance of the circuitry in the
feedback path has virtually no impact on the amplifier input sensitivity.

The impact of the offsets introduced by the forward path and feedback path on the amplifier is different.
By design, offset introduced by the forward path will be attenuated by the DC loop gain (ideally infinite).
However, the offset introduced by the feedback path will be directly referred to the output of the main
amplifier. This can be easily seen by referring the offset introduced by the feedback path to the input of
the feedback loop and recognizing that this corresponds to the output of the main amplifier.

We can verify these observations with the CppSim model:

• Double click on the offset_comp_fb symbol in Sue2 and change offset_fb, the input referred
offset of the feedback path, to 50e-3 (50mV – a large value) and var_fb, the input referred noise
variance of the feedback path, to HzVe /25.6 216− (100x the input-referred noise variance of the
forward amplifier path). This is equivalent to a standard deviation of HznV /25 (also a very
large value).

• Either type Ctrl-S or click on File->Save in Sue2 to save the changes.

• Click on the Compile/Run CppSim button to run the simulation.
• Click on the plotsig(…) radio button in CppSimView and then select the eyesig(…) function. Set

period to be 1.200e-12 and start_off to be 1.0e-6. Hit Return to enter the function into the
CppSimView function list. CppSimView should now appear as shown below.

 29

• Clock on the nodes radio button, and then double-click on signal out and then on signal package.
The eye diagrams of the ideal limit amplifier output signals before and after the package model
should appear as shown below.

• The output-referred offset voltage is approximately 25mV (Note that the nonlinear coefficients on

page 24 are set back to zero in this simulation). The offset of the feedback path has been
attenuated somewhat.

• Click on the test.tr0 radio button and then choose the output file to be test_jitter.tr0.
• Click on the eyesig(…) radio button and then choose the plotting function to be

plot_pll_jitter(…). Set the ref_timing_node parameter to edge_ref and the start_edge to 1. Hit
Return to enter the values into the CppSimView function list. CppSimView should appear as
shown below.

 30

• Click on the No Nodes radio button, and then double-click on edge_clk and edge_package. A
plot of the instantaneous phase for the limit amplifier output both before and after the package
model should appear, as shown below. The RMS jitter for each signal, in units of mUI (i.e. UI is
unit interval, or one data period), is indicated in the legend of each signal.

• The resulting RMS jitter for the limit amplifier output signals, out and package, increased slightly
from 1.24ps and 1.06ps, with no noise, to 1.33ps and 1.08ps with HzVe /25.6 216− noise variance

 31

in the feedback path (Note that input amplitude is set back to 2.5mv in this simulation). This
confirms that noise introduced in the feedback path has significantly less influence than noise
introduced in the feed-forward path. (Note: the number of time steps was increased from 1e4 to
5e4 to show that the phase error does settle).

Design Overview of the Offset Compensation Loop

Let us now focus on how the parameters were set for the offset compensation loop used within both the
limit amplifier and the feedback path.

Key parameters of the limit amplifier and feedback path include:
• Data rate: 2.5Gb/s
• Limit amplifier bandwidth: 3.0GHz (based on the specified data rate)
• Limit amplifier gain: 42dB
• Compensation settling time: < 1μS (loop bandwidth of ~1MHz)
• Peak detector gain: 0dB
• Simulation time step: Ts=1/50e9 (i.e., the sample rate is set to at least 10 times that of the highest

frequency, which is the PRBS input).

A. Modeling

To model the control loop we need to make some simplifying assumptions. First, to eliminate the
difficulty of analyzing multiple control loops, we only consider the case when there is one active control
loop. In the end, we can extend the analysis to the more general case when there are multiple control
loops and test that this assumption is valid in simulation. Further, we can assume that all blocks in the
system are linear about a given operating point and make use of LTI modeling techniques. We will now
develop models for each of the system blocks.

Each of the amplifiers in the forward amplifier path can be modeled by a DC gain and a single pole,
representing the bandwidth of the amplifier. Therefore, the linear model for each amplifier is:

)1(
)(

1ps
A

sH V

+
=

where AV is the gain and p1 is the pole at the 3dB frequency. If we consider a cascade of n amplifiers, the
aggregate transfer function becomes:

n

V

ps
A

sH ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
)1(

)(
1

Additionally, the peak detector can be similarly modeled by its DC gain, K1, and a single pole, p2, and has
the same form as the limit amplifier characteristic equation. The final form of the peak detector model is:

)1(
)(

2

1

ps
K

sH
+

=

 32

The integrator can be modeled as an ideal integrator:

s
K

sH 2)(=

where K2 is the gain. Putting all of the pieces together, the complete model for the forward amplifier path
and the offset compensation is shown in Figure 4 with the noise sources added.

+

-

In Out

Vcontrol

Vn
2 Vos

Vn
2 Vos

k2

s

k1

1+s/p2

Av

1+s/p1

Figure 4: Linearized model of the limit amplifier and offset compensation with noise sources

B. Determining System Parameters with PLL Design Assistant

For the following discussion, we assume that p1 >> p2. This is valid in this system since p1 corresponds to
the bandwidth of the limit amplifier (3.0GHz), and p2 corresponds to the bandwidth of the peak detector
(~1-5MHz for 1μs compensation time). In a similar fashion to the linear model for a PLL, where the state
variable is phase and not the data signal itself, the variable of interest in this system is the offset voltage.
To characterize the system response, we define the open loop response to be:

⎟
⎠
⎞

⎜
⎝
⎛⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
s

K
ps

K
ps

A
sA V 2

2

1

1)1()1(
)(

The PLL Design Assistant is a useful tool that was developed to aid the design of PLL systems and can be
downloaded at http://www-mtl.mit.edu/researchgroups/perrottgroup/tools.html. However, with a little
imagination this tool can be used to model nearly any linear system. We can think of the system in Figure
4 as a second order, type I PLL with the forward amplifier path corresponding to a high frequency
parasitic pole. As stated before, the open-loop pole, p1, is set to 3.0GHz and we will assume that the gain
of the peak detector, K1, is unity. Then, using the PLL Design Assistant we can specify a desired closed-
loop bandwidth, based on the desired compensation settling time and step-response shape, to achieve the
optimal settling time.

 33

For example, Figure 5 illustrates the PLL Design Assistant GUI designing the system loop with a Bessel
shape and a bandwidth of 1.0MHz. The resulting gain coefficient, K, corresponds to the product AVK2.
The open-loop pole frequency, fp, corresponds to the pole of the peak detector, p2. The calculated step-
response of the closed-loop system, shown in Figure 6, indicates that the total settling time for the offset
compensation is roughly 1μs and that the system is stable.

Figure 5: PLL Design Assistant GUI configured for second order, type I linear system

Figure 6: Step response calculated with PLL Design Assistant

 34

Comparison of Simulated and Measured Results

To verify the validity of the proposed behavioral model, we will compare simulated results to measured
results. A 7-stage resistor loaded limit amplifier utilizing the proposed offset compensation method was
fabricated in National Semiconductor’s 0.18 μm CMOS process. The final die size is 1 mm2 and the total
active area is 0.5 mm2. A die micrograph is shown in Figure 7. The die was wired bonded in a standard
ceramic package, which was then soldered to a 5-layer FR4 PC board containing low noise supply
voltages and digital interface circuitry. The prototype was tested at data rates up to 3.125 Gb/s with a 231-
1 PRBS input pattern that had input amplitudes from 2.5-50 mVpp. The PRBS input was generated with
an HP 70843B 12.5GB/s error performance analyzer driven by an HP 70340A signal generator. The
output jitter is measured from eye diagrams of the limit amplifier output using an Agilent 81600A 50GHz
oscilloscope. The offset compensation step-response is measured by plotting the feedback control voltage
with an Agilent 54832D mixed-signal oscilloscope triggered from the serial I/O input control bits. The
final chip dissipates 338 mW from a 1.8 V supply, including the output buffer. The limit amplifier and
offset compensation dissipate 113 mW. The total differential gain was measured to be 42 dB.

Figure 7: Micrograph of final chip, in National Semiconductor’s 0.18μm CMOS process, highlighting the
major system blocks

Simulated and measured eye diagrams with a 2.5 mVpp input amplitude at 2.5 Gb/s are shown in Figure
8. The measured RMS jitter is 4.30 ps and the simulated RMS jitter is 4.05 ps at the output of the
package (package_alt). The predicted input sensitivity is 2.1 mVpp and the simulated input sensitivity is
2.5 mVpp. The jitter performance, plots shown below, compares favorably with the results predicted in
simulation. The differences in the eye diagram shapes at the upper and lower voltage levels are most
likely due to transmission-line effects not captured in the behavioral model.

 35

The settling behavior of the control loop can be seen by plotting the feedback control voltage. The
simulated (left) and measured (right) control voltage, with the loop bandwidth set to 1MHz (1μS settling
time goal). The trigger is plotted at the bottom of each plot (at 400nS) and the control signal is plotted at
the top. Besides the noise in the measured plot, the simulated settling response agrees well with the
measured result.

 36

Conclusion

In this document we have covered the basic issues related to behavioral simulation of a new offset
compensation scheme for high gain amplifiers using CppSim. In particular, we have introduced the
reader to the tasks of running CppSim simulations, plotting the output signals in the time domain, plotting
eye diagrams, plotting instantaneous and average phase error at the output (jitter) and considered the
impact of non-indealities such as ISI, noise and offset. Finally, we covered the basic modeling
calculations for the system.

~700nS ~620nS

