
Behavioral Simulation of Decision Feedback 
Equalizer Architectures Using CppSim 

 
Matt Park 

http://www-mtl.mit.edu/research/perrottgroup/ 
  

October 31, 2005 
Revised: June, 2008 

Copyright © 2005 by Matt Park  
All rights reserved. 

 
  

Table of Contents  
 
Setup................................................................................................................................... 2 
Introduction....................................................................................................................... 4 

A. Challenges in High-Speed Serial Link Design ....................................................... 4 
B. Signal Restoration Using a Decision Feedback Equalizer (DFE) ........................ 5 

Preliminaries ..................................................................................................................... 8 
A. Opening Sue2 Schematics........................................................................................ 8 
B. Running CppSim Simulations............................................................................... 10 

Plotting Time-Domain Results....................................................................................... 11 
A. Output Signal Plots ................................................................................................ 12 
B. Output Signal Eye Diagrams................................................................................. 14 
C. RMS Jitter .............................................................................................................. 15 

Examining Non-Idealities............................................................................................... 16 
A. Intersymbol Interference (ISI).............................................................................. 16 
B. Reflections ............................................................................................................... 16 
C. Non-Linearity and Offset ...................................................................................... 17 
D. Gain-Bandwidth Limitations and Clock-to-Q Delays ........................................ 17 

DFE Calibration.............................................................................................................. 18 
DFE Architectures .......................................................................................................... 22 

A. Prototypical DFE.................................................................................................... 22 
B. Half-Rate DFE with One Tap of Speculation ...................................................... 22 
C. Simulating and Analyzing Half-Rate Architecture in CppSim ......................... 24 

Conclusion ....................................................................................................................... 27 
Appendix: Generating Channel Impulse Response from Measured Data3............... 27 
 
 



Setup 
 
Download and install the CppSim Version 3 package (i.e., download and run the 
self-extracting file named setup_cppsim3.exe) located at: 
 

http://www.cppsim.com 
 

Upon completion of the installation, you will see icons on the Windows desktop 
corresponding to the PLL Design Assistant, CppSimView, and Sue2.  Please read the 
“CppSim (Version 3) Primer” document, which is also at the same web address, to 
become acquainted with CppSim and its various components.  You should also read the 
manual “PLL Design Using the PLL Design Assistant Program”, which is located at 
http://www.cppsim.com, to obtain more information about the PLL Design Assistant as it 
is briefly used in this document.  
 
To run this tutorial, you will also need to download the file dfe.tar.gz available at 
http://www.cppsim.com, and place it in the Import_Export directory of CppSim 
(assumed to be c:/CppSim/Import_Export).  Once you do so, start up Sue2 by clicking 
on its icon, and then click on Tools->Library Manager as shown in the figure below. 
 

 
 
In the CppSim Library Manager window that appears, click on the Import Library Tool 
button as shown in the figure below. 



 
 

In the Import CppSim Library window that appears, change the Destination Library to 
DFE, click on the Source File/Library labeled as dfe.tar.gz, and then press the Import 
button as shown in the figure below.  Note that if dfe.tar.gz does not appear as an option in 
the Source File/Library selection listbox, then you need to place this file (downloaded 
from http://www.cppsim.com) in the c:/CppSim/Import_Export directory. 



 
 

Once you have completed the above steps, restart Sue2 as directed in the above figure. 
 
Introduction  
 
Most significant improvements in performance in increasingly complex communications 
systems will arise from architectural innovations. These innovations are only possible 
when you can quickly and accurately model and simulate the system under consideration. 
CppSim, initially designed for simulating phase-locked loops, is a free behavioral 
simulation package that leverages the C++ language to allow very fast simulation of a wide 
array of system types. The goal of this tutorial is to expose the reader to a non-PLL based 
system where modeling with CppSim enables the exploration of key design issues, and 
may inspire new architectures for improved performance.  
 
A. Challenges in High-Speed Serial Link Design  
 
As IC technology continues to scale, multi-Gb/s data rates have become the norm in many 
high-speed chips. This improvement in on-chip speed has led to a growing interest in 
developing faster I/O for chip-to-chip communication. Unfortunately, the bandwidth 
limitations of PCB and backplane traces and wires have not improved as dramatically over 
the years, largely due to cost considerations. Consequently, channels that were originally 
designed to support data rates in the 100 Mb/s realm are now being used to transfer data in 
the 1-10 Gb/s range.  
 



The frequency responses of two typical channels with different terminations are shown in 
Figure 1. Notice the general low-pass characteristic of the channels caused by capacitances 
and termination resistances, as well as skin effects and dielectric losses of the PCB. Nulls 
in the response are due to resonances caused by impedance mismatches and reflections. As 
shown by the impulse response in Figure 2, the PCB loss is manifest as inter-symbol 
interference (ISI) in the time domain. Depending on when the pulse is sampled, the 
receiver can make incorrect decisions, resulting in bit-errors. Hence, for multi-Gb/s data 
rates to be viable in such channels, it is clear that some form of channel equalization is 
required1.  

 
Figure 1: frequency response of backplane channel1 

 

 
Figure 2: pulse response of backplane channel1 

 
B. Signal Restoration Using a Decision Feedback Equalizer (DFE)  
 
Channel equalization can be accomplished through a number of techniques, such as high 
pass filtering the data at the transmitter and/or receiver (a.k.a., feed-forward equalization or 
                                                 
1 V. Stojanovic and M. Horowitz, “Modeling and Analysis of High Speed Links”, IEEE 
Custom Integrated Circuits Conference, September 2003  



FFE), and using tunable, impedance matching networks, just to name a few. The merits and 
disadvantages of these approaches have been analyzed thoroughly in the literature2, but are 
beyond the scope of this basic tutorial.  
 
This tutorial focuses on a particular form of equalization known as decision feedback 
equalization, or DFE. The operation of a DFE can be understood by observing Figure 3. 
Assuming the channel is linear time-invariant (LTI), ISI can be described as a deterministic 
superposition of time-shifted smeared pulses. The DFE then uses information about 
previously received bits to cancel out their ISI contributions from the current decision, as 
shown in Figure 4. A slightly subtle point is that the DFE can only remove post-cursor ISI, 
that is, the ISI introduced from past bits. The architecture cannot remove pre-cursor ISI, or 
ISI introduced from future bits (see Figure 3). To eliminate pre-cursor ISI, FFE must be 
leveraged to generate faster edges.  
 

 
 

Figure 3: illustration of ISI as a superposition of time-shifted smeared pulses 
 

                                                 
2 M. Sorna et al, “A 6.4 Gb/s CMOS SerDes Core with Feedforward and 
Decision-Feedback Equalization”, ISSCC Digest, February 2005.  



  
 

Figure 4: (a) DFE input heavily distorted by ISI, (b) equalized DFE analog output prior to 
being sampled and latched digitally  



Preliminaries  
 
A. Opening Sue2 Schematics  
 
Click on the Sue2 icon to start Sue2, and then select the DFE library from the schematic 
listbox. The schematic listbox should now look as follows: 
 

 
 
Select the DFE_simple cell from the above schematic listbox. The Sue2 schematic 
window should now appear as shown below. Key signals for this schematic include  
sum_out: output of analog summing stage  
out_pbn: DFE output from flip-flop n 
in: input to the DFE  
edge_ref: reference edge for jitter measurement  
edge_out: output edge for jitter measurement  
 

 



Drive the DFE with a PRBS signal by double-clicking on the module labeled 
tap_calibration, and ensure that the signal selection variable sel is set to 1 for PRBS, as 
shown below:  

 
  
Select the analog_summer icon within the above schematic, and then press e to descend 
down into the associated schematic. You should now see the schematic shown below.  
 

 
 
Press Ctrl-e to return to the DFE_simple cellview.  



B. Running CppSim Simulations  
 
In the Sue2 schematic window, click on the Tools text box in the menubar, and then select 
CppSim Simulation.  A Run Menu window similar to the one shown below should open 
automatically.  Note that the Run Menu is already synchronized to the schematic that you 
will be simulating (dfe_simple).  If for whatever reason this is not the case, click on the 
Synchronize button in the menu bar, the Run Menu will be synchronized to the schematic 
in your Sue2 window. 
 

 
 
To establish the simulation parameters, click on the Edit Sim File button in the menu.  An 
Emacs window should appear displaying the contents of the simulation parameters file 
(test.par).  The contents of your test.par file should look something like what is shown 
below:   
 
///////////////////////////////////////////////////////////// 
// CppSim Sim File: test.par 
// Cell: dfe_simple 
// Library: DFE 
///////////////////////////////////////////////////////////// 
 
// Number of simulation time steps 
// Example: num_sim_steps: 10e3 
num_sim_steps: 10e4 



 
// Time step of simulator (in seconds) 
// Example: Ts: 1/10e9 
Ts: 1/1000e9 
 
// Output File name 
// Example:  name below produces test.tr0, test.tr1, ... 
// Note: you can decimate, start saving at a given time offset, etc. 
//    -> See pages 34-35 of CppSim manual (i.e., output: section) 
output: test  
 
// Nodes to be included in Output File 
// Example: probe: n0 n1 xi12.n3 xi14.xi12.n0 
probe: in sum_out clk out_pb1 edge_ref edge_out 
 
///////////////////////////////////////////////////////////// 
// Note:  Items below can be kept blank if desired 
///////////////////////////////////////////////////////////// 
 
// Values for global parameters used in schematic 
// Example: global_param: in_gl=92.1 delta_gl=0.0 step_time_gl=100e3*Ts 
global_param:  
 
// Rerun simulation with different global parameter values 
// Example: alter: in_gl = 90:2:98 
// See pages 37-38 of CppSim manual (i.e., alter: section) 
alter: 
 
When you are finished, you can close the Emacs window by pressing Ctrl-x Ctrl-c.  To 
launch the simulation, click on the menu bar button labeled Compile/Run. 
 
Plotting Time-Domain Results  
 
Double-click on the CppSimView icon to start the CppSim viewer. The viewer should 
appear as shown below – notice that the banner indicates that it is currently synchronized to 
the DFE_simple cellview.  If this is not the case, Sue2 and CppSimView can be 
synchronized by clicking the Synch button on the left-hand side of the CppSimView 
window. 
 

 
 
To view the simulation results, first click on the radio button titled No Output File.  
Immediately after this button is clicked, the radio button will instead display the output 



file’s name, test.tr0.  Next, click on the Load button on the left-hand side of the 
CppSimView window.  Once this button is pressed, the Nodes radio button will be filled in, 
and the probed nodes will be listed, as shown below.       
 

 
 
A. Output Signal Plots  
 
The input data is a PRBS data stream at 10 Gb/s.  
In the CppSimView window, double-click on signals in and out_pb1. You should see 
plots of the DFE input and first flip-flop output waveforms as shown below:  
 

 
 

Now click on the Reset Node List button in the CppSimView window, and then 
double-click on signal sum_out. You should see a plot of the analog summing amplifier 
output as shown below:  
 



 
 
To change the x-axis of the figure (the y-axis automatically scales), hit the Zoom radio 
button on the CppSimView menu-bar.  This will cause a series of buttons to appear on the 
top and bottom of the plot window, as shown below.  
 

 
 
Next click the (Z)oom X push-button located at the top of the plot window. Select the 
desired x-axis range by clicking at the beginning and ending location in any of the plotted 
signals. The figure will look similar to the figure below. Additionally, you can zoom in and 
out and pan left and right using the In and Out and the < and > push-buttons, respectively, 



located at the top of the plot figure.  
 

 
 
B. Output Signal Eye Diagrams  
 
Click on the plotsig(…) radio button in CppSimView and then select the eyesig(…) 
function. Set period to be 100e-12 (i.e., one symbol long for the output signal waveforms) 
and start_off to be 1e-9. Since there is no startup-time to the DFE, the start_off time is 
arbitrary; however, if there were a startup transient (e.g., settling of tap weights determined 
by an adaptive algorithm), then the start_off time should be set to a time when the 
algorithm has completely settled.  Hit Return to enter in the parameters.  CppSimView 
should now appear as shown below.  
 

 
 
Click on the nodes radio button, and then double-click on signal sum_out. The eye diagram 
of the ISI-corrected summing stage output should appear as shown below:  



 
 
C. RMS Jitter  
 
Now perform the following operations in CppSimView: Click on the eyesig(…) radio 
button and then choose the plotting function to be plot_pll_jitter(…). Set the 
ref_timing_node parameter to edge_ref (this is the interpolated reference clock output 
signal) and the start_edge to 10, Hit Return to enter the values into the CppSimView 
function list. CppSimView should appear as shown below: 
 

 
  
Click on the No Nodes radio button, and then double-click on edge_out. A plot of the 
instantaneous phase of the DFE output should appear, as shown below. The RMS jitter for 
each signal, in units of mUI (i.e. UI is unit interval, or one data period) is indicated in the 
legend.  
 



 
 
The resulting RMS jitter for the DFE summing node, sum_out, is 5.02 ps rms.  
 
Examining Non-Idealities  
 
A. Intersymbol Interference (ISI)  
 
As described in the Introduction, if the channel is an LTI system, then ISI can be described 
as a superposition of time-shifted pulses. CppSim can model the channel in three ways:  
channel_model represents the channel as a simple 3-pole low-pass filter  
channel_model_trline describes the channel as a transmission line, with the potential for 
loss, impedance mismatches, and reflections  
link_channel uses an impulse response generated from actual channel measurements (see 
Appendix for more)  
 
B. Reflections  
 
By default, channel_model is connected to the DFE input in the schematic dfe_simple. To 
use channel_model_trline in the DFE simulations, replace the connection from the output 
of channel_model to node in, to the output of channel_model_trline to node in. The 
schematic should then resemble what is shown below.  
 
By double-clicking on the channel_model_trline cell, parameters concerning 
transmission line loss and delay, as well as package interface (trace/pad capacitance and 
bondwire inductance), and source and load impedances can be entered.  
 



 
 
C. Non-Linearity and Offset  
 
Non-Linearity and offset in the summing amplifier are described using a third-order 
polynomial description of the amplifier in the form: 
  

y = a0+a1*x+a2*x^2+a3*x^3 
  

The ideal gain of the amplifier is expressed by the a1 term, offset is characterized by the a0 
term, and nonlinearity by the a2 and a3 terms. These coefficients can be obtained from a 
regression analysis of the DC transfer characteristics of the summing amplifier in HSPICE 
or SPECTRE.  
 
D. Gain-Bandwidth Limitations and Clock-to-Q Delays  
 
All cells in the DFE model have a gain and bandwidth parameter that can be adjusted 
according to the actual design. For example, double-clicking the regen_flipflop cell in the 
dfe_simple schematic brings up a window with the parameters gain and f_bw, as shown 
below:  

 
 
Simply change the gain and f_bw to match the actual circuit design. These parameters can 



be adjusted to match a particular design corner, allowing for quick determination of the 
system’s robustness over corners.  
 
While the gain-bandwidth parameters partially describe the clock-to-Q delay of a latch or 
flip-flop, they do not describe the signal-dependent delay. This information is captured in 
the model for the regenerative latch (regen_latch) in CppSim. Here, the latch is 
approximated as an amplifier (gain) that linearly settles to a min or max value when 
clocked. The settling time is then determined by the bandwidth (f_bw) of the structure.  
While the model is not an exact representation of a true latch, it does mimic the 
signal-dependent nature of clock-to-Q delays, and enables analysis of the impact of latch 
metastability in the DFE.  
 
DFE Calibration  
 
The DFE tap coefficients must be tuned to cancel out the ISI contributions of the previous 
bits. In an actual receiver, this would be accomplished with the aid of an eye-monitoring 
circuit and adaptive tap-weight adjustment algorithm. For the purposes of studying 
architectures, however, the taps can be set without either of these blocks by simply 
monitoring the channel pulse response.  
 
Double-click on the cell tap_calibration in the schematic dfe_simple. A window should 
open with prompts for input.  Enter values for Tsym and amplitude, and set sel to 0. For 
example, for a data rate of 10 Gb/s and a data amplitude of 1V, set Tsym to 100e-12 and 
amplitude to 1. Setting sel to 0 generates a pulse for the duration of one symbol. clk_delay 
describes when the DFE samples the data relative to the ideal data rising edge, and can be 
set to 0 for the time being (ideally, this sampling point would be determined by a CDR).  
When you are finished, the tap_calibration window should resemble what is shown below: 
 

 
 
Reconnect the channel_model cell to the DFE input, and double-click on the cell to 
modify its properties.  A window with prompts for inputs should open, as shown below:  
 



 
 
Set k, fp1, fp2, and fp3 to 1.0, 1e9, 5e9, and 10e9, respectively. Save changes in Sue2, and 
click on the Compile/Run button In CppSimView. When CppSim finishes simulating, 
click on the plot_pll_jitter(…) radio button, and select the plotsig(…) plotting option. The 
CppSimView window should look like this:  
 

 
 
Click on the Nodes radio button, and replace the ‘nodes’ text in the plotsig(…) statement 
with ‘in,clk’, and press the Plot button. A plot window should open displaying both the in 
and clk signals on the same axis. Since the pulse is hidden by all the clock transitions, click 
on the zoom radio button at the top of the CppSimView window, and use the (Z)oom X 
option in the plot window to zoom into the time segment from roughly 50ns to 51ns. The 
plot window should look something like what is shown below:  
 



 
 
This purpose of this plot is to determine what values of the pulse amplitude the DFE will 
sample at the rising edge of clk. Actual DFE eye-monitoring circuits will try to adjust the 
clock phase relative to the data such that the peak of the eye is sampled. An equivalent 
operation adjustment can be done here by delaying rising edge of clk so that it is 
approximately coincident with the peak of the pulse response. For this particular channel, 
the plot indicates that a delay of 50 ps is sufficient.  In the dfe_simple schematic window in 
Sue2, double click on the tap_calibration cell, and enter 50e-12 for clk_delay.  
 
Now that the clock is aligned with the pulse response peak, it is now possible to calibrate 
the tap weights. In the CppSimView window, click on the Edit Sim File button and change 
the output statement to the following:  
 
output: test trigger=clk  
 
Remove clk from the list of probed nodes by modifying the probe statement to:  
 
probe: in sum_out out_pb1 in edge_out edge_ref  
 
The trigger statement will sample the signals listed in the probe statement only at the rising 
edge of clk, simplifying the tap weight measurements. Save changes, and close the Emacs 
window, and click on Compile/Run.  
 
When the CppSim simulation finishes, ensure that the plotsig(…) plotting function is 
selected. Click on the No Nodes radio button, and double-click on in. A plot window will 
open showing the sampled pulse response. Use the (Z)oom X tool to zoom into the region 
from 50 ns to 51 ns. To see the individual sample points, click on the (L)ineStyle button at 
the top of the plot window. The plot window should now look like this:  
 



 
 
Sweeping the sampled pulse response from left to right, the following observations can be 
made (note that -1 corresponds to a “zero” value in the plot of the differential signal):  
 
The first non-zero sample is pre-cursor ISI  
The second non-zero sample is the peak of the pulse response  
The third non-zero sample is the first post-cursor ISI (i.e., h1)  
The fourth non-zero sample is the second post-cursor ISI (i.e., h2)  
Etc.  
 
To measure the amplitude of the sampled values, use the (M)easDiff button at the top plot 
window. Click on a sample of zero value (i.e., -1) with the left mouse button and right click 
in the particular sample of interest. A red line will connect the two samples, and left 
clicking again will bring up a pop-up window displaying the difference information, as 
shown below:  

 
 



The tap weight is then equal to the Delta Y-Value. For example, the value of h1 was 
determined to be approximately 0.495. Repeat this procedure until all tap weights have 
been determined. Finally, double click on the cell analog_summer in the dfe_simple 
schematic, and enter in the recorded tap values hn. 
  
DFE Architectures  
 
A. Prototypical DFE  
 
While the DFE illustrated in the schematic dfe_simple works well in a functional sense, it 
is not necessarily the most elegant or efficient structure, especially in high-speed 
applications. In particular, observe that all amplifiers and flip-flops must operate at the 
maximum data rate. This places stringent requirements on the latch setup and hold times, 
and even stricter requirements for the settling time of the feedback signals at the summing 
amplifier output node (See Figure 5):  
 

tCLK2Q + tpd,h1-hN + tsum + tsetup < 1 U.I. 
 

Where tCLK2Q is the clock-to-Q delay of the flip-flop, th1-hN is the propagation delay through 
the tap (h1-hN), tsum is the summing amplifier propagation delay, and tsetup is the flip-flop 
setup and hold time.  When parasitic and wiring capacitances are included in the design, 
these rigid timing requirements may be extremely difficult to satisfy across corners, or 
require a power consumption and device area that is prohibitive.  
 

 
 
Figure 5: critical path (red line) in basic DFE architecture has only 1 U.I. to settle  
 
B. Half-Rate DFE with One Tap of Speculation  
 
A more elegant and efficient DFE architecture that relaxes the timing requirements by a 
factor of two, while still achieving equalization at the maximum data rate, is shown below:  
 
 



 
 

Figure 6: Alternate DFE architecture employing half-rate clocking and one tap of 
speculation to relax timing. Critical path (red line) now has 2 U.I. to settle. 
 
This particular DFE employs two techniques to achieve this feat: speculation and half-rate 
clocking. In speculation (also called “loop-unrolling”), decisions are made for both cases in 
which the previous bit was a “1” and a “0”; this is accomplished by having two analog 
summers, two regenerative flip-flops, and a mux (see Figure 7). The h1 tap now functions 
as a DC offset and is not dynamically switched.  A second flip-flop at the output then drives 
the mux select, and effectively picks the “correct” decision, thus ignoring the “wrong” 
decision.   
 
The advantage in speculation is that the potentially significant h1 feedback delay is 
eliminated (i.e., the loop is unrolled). Presumably, the clock-to-Q delay of the second stage 
latch is minimal since it is latching a digital input.  However, it is important to note that the 
critical timing path in Figure 7 is still the same: the feedback signal from the mux output to 
the summing amplifier still has only 1 U.I. to settle. 
 



 
 
Figure 7: DFE with one tap of speculation.  Critical path (red line) has 1 U.I. to settle. 
 
In order to allow 2 U.I. for the critical timing path to settle, a second technique of half-rate 
clocking is employed (see Figure 6). Here, a half-rate clock drives two duplicate paths at 
opposite clock phases.  Decisions “ping-pong” back and forth between the two paths, and 
generate even and odd bit sequences.  Due to the ping-pong action of the two halves, the 
critica time path now has 2 U.I to settle: 

 
tCLK2Q + tpd,h2 + tMUX + tsum + tsetup < 2 U.I. 

  
The architecture has the added benefit that all circuitry operates at half the data rate.  The 
penalty is that there are now twice as many devices.  However, the power and area costs do 
not necessarily scale in a one-to-one fashion with the prototypical DFE of Figure 5, making 
the speculative, half-rate architecture an attractive alternative. 
 
C. Simulating and Analyzing Half-Rate Architecture in CppSim 
 
The Sue2 schematic for the behavioral model of the half-rate DFE with one tap of 
speculation can be found under the DFE library, in the schematic dfe_halfrate_spec.   The 
schematic should appear as shown below: 
 



 
 
The dfe_halfrate_spec schematic is very similar to the dfe_simple schematic. Indeed, the 
channel models are identical, as are the regenerative flip-flops, signal sources (PRBS and 
pulse), and the calibration procedure.  The significant difference between the two models 
concerns generating the eye diagrams. Observe that the half-rate architecture with one-tap 
of speculation now has four analog summer outputs to handle the four different 
combinations (odd/even, 1/0 previous bit). At a given moment in time, the output of the 
summers may be valid, and at other times invalid depending on what the previous bit truly 
was. Therefore, the eye diagram plotting function must only plot the summer output when 
the output is valid. Since the PRBS input is known a priori, the summing stage output can 
be sampled when it is known to be valid. This is accomplished by the halfrate_sampler 
blocks at the bottom of the schematic.  
 
To see the effect of the halfrate_sampler block, go to the CppSim Run Menu window and 
click the Synch button, and then click the Compile/Run button. When simulation finishes, 
click on the eyesig(…) radio button and replace period and start_off in the eyesig(…) plot 
expression with 200e-12 and 1.05e-9, respectively, and hit enter. The CppSimView 
window should now look like this:  
 



 
 
Next, click on the No Nodes radio button, and double click on out_ph1_even and 
out_ph1_even_sel. A plot window should open displaying what is shown below:  
 

 
 
Comparing the plots, the halfrate_sampler block is able to recover the eye by setting the 
summer output to zero when it is invalid. This is visible in the out_ph1_even_sel plot as a 
solid yellow line at zero.  
 



Conclusion  
 
This tutorial covers the basic issues related to behavioral simulation of a simple DFE 
receiver example using CppSim. In particular, the reader has been introduced to the tasks 
of running CppSim simulations, plotting eye diagrams, and performing jitter 
measurements, as well as viewing the impact of non-idealities, such as inter-symbol 
interference, amplifier offset and non-linearity, and latch metastability and signal 
dependent clock-to-Q delay. Finally, the advantages of a half-rate DFE with speculation 
over the prototypical DFE architecture have been analyzed.  
 
Appendix: Generating Channel Impulse Response from Measured Data3  
 
An impulse response generated from measured S-parameter data stored in an S4P file can 
also be included in the DFE behavioral simulations. As an example, open the schematic 
dfe_simple_real_channel in the DFE library. The resulting schematic window should 
now look like this:  
 

 
 
An example S4P file, channel_data.s4p, is included in this distribution for illustrative 
purposes, and is located in c:\CppSim\SimRuns\DFE\dfe_simple_real_channel\. In 
order to simulate the DFE, the impulse response of the channel (S21) must be extracted 
from S4P data using the MATLAB script link_channel_gen.m3. The script appears below:  
 
%%% link_channel_gen.m – generates channel impulse response based on  
%%% measured data stored in an *.s4p file  
clear all; close all; clc;  

                                                 
3 Special thanks to Prof. Vladimir Stojanovic for the MATLAB scripts and channel 
models! 



  
%%% Create channel response for the simulator %%% 
channelName='C:\CppSim\SimRuns\DFE\dfe_simple_ 
real_channel\channel_data.s4p';  
mode='s21';  
[f,H]=extract_mode_from_s4p(channelName,mode);  
figure(1)  
subplot(211),plot(f*1e-9,20*log10(abs(H)),'b');  
xlabel('frequency [GHz]');  
ylabel('Transfer function [dB]');  
grid on;  
Tsym=100e-12; %%% Symbol Rate: e.g., Tsym = 1/fsym = 1/10 Gb/s  
Ts=Tsym/100; %%% CppSim internal time step, also used to sample  
%%% channel impulse response  
imp=xfr_fn_to_imp(f,H,Ts,Tsym);  
nsym_short=300*100e-12/Tsym;  %%% persistence of the impulse response  
     %%% tail in the channel in terms of the  

%%% number of symbols  
imp_short=imp(1:floor(nsym_short*Tsym/Ts));  
figure(1)  
subplot(212), plot(imp,'b.-');  
hold on;  
plot(imp_short,'r.-');  
ylabel('imp response');  
legend('long','short');  
%%% Create the channel impulse response taps file, with appropriate  
%%% sampling according to Ts used in the sims  
save link_channel.dat imp_short -ascii;  
 
In order for the script to generate the proper impulse response, the data rate (Tsym) and the 
internal time step (Ts) need to match those in the CppSim behavioral model. For example, 
in dfe_simple_real_channel, the default data rate is 10 Gb/s and the internal time step in 
the test.par file is 1 ps; consequently, Tsym = 100e-12 and Ts = Tsym/100 = 1e-12. Once 
this information is entered, the link_channel_gen.m script can be executed from the 
MATLAB command line, and an output data file, link_channel.dat, containing the 
impulse response of the channel will be created.  
 
To use an alternate S4P file, the channelName variable in the above MATLAB script 
should be redefined as the complete path of the file; that is:  
 
channelName='C:\CppSim\SimRuns\DFE\dfe_simple_real_channel\<your_channel
_data>.s4p';  
 


