Using CppSim to Generate Neural Network Modules in
Simulink using the simulink_neural _net_gen command

Michael H. Perrott
http://www.cppsim.com

June 24, 2008

Copyright © 2008 by Michael H. Perrott
All rights reserved.

Table of Contents

LT [FTox (o] o ISR PSRRI 1

IMPOTtiNG the EXAMPIE ...t bbbt e e 1

Highlights OF EXAMPIE ..ottt e et e s reeste et e saeesaeeneenneas 4
A. SChematiC OF NEUIal NOUEoouviiiiie ettt sae e nrees 4
B. Overall NetWOrk TOPOIOGYc..ciieiieieiieiie ettt sttt este e e aneesaeeneenneas 5
C. Specification of Network INtErCONNECTION.cuiiiiiiiieierie e 6
D. Running the Example in Matlab/SImUIINKcccoooiiiiiiiccecece e 9

Specification of the Neural Net INtErCONNECTION............ccviiiiiiiieie e 12

Introduction

CppSim offers a convenient way of realizing neural networks by using a graphical environment to
create the neural node and files to specify the connectivity between the nodes and the overall input
and output of the network. CppSim creates all of the interface code that is needed to turn the resulting
neural net into a Simulink S-Function block. Given that the user has access to a suitable C++ compiler
(such as Microsoft Visual C++), the S-Function code is compiled by the user and the block can then
be used within Simulink.

Importing the Example

To explain the basic operation of using the ‘simulink_neural_net_gen:” command in CppSim, we
will work through an example. It is assumed that the user has installed CppSim on their computer
(downloaded from http://www.cppsim.com), downloaded the file neural_net_example.tar.gz from
http://www.cppsim.com, and has also installed a suitable C++ compiler for Matlab mex and S-
function compilation (such as Microsoft Visual C++).

For issues related to installation and general use of CppSim, please refer to the CppSim Primer
available at http://www.cppsim.com. Also, one should note that Microsoft provides a free “Express”
version of their C++ compiler that can be used to compile mex files in Matlab. Please see the link
http://www.mathworks.com/matlabcentral/fileexchange/22689 for details.

http://www.cppsim.com/
http://www.cppsim.com/
http://www.cppsim.com/
http://www.mathworks.com/matlabcentral/fileexchange/22689

Place the file neural_net_example.tar.gz in the directory c:/CppSim/Import_Export. Note
that we have assumed that the root installation directory for CppSim is ¢:/CppSim in this case
— please modify the above directory location if appropriate.

Open up Sue2 by clicking on its icon on the Windows Desktop.

Within Sue2, select Library Manager under the Tools menu item as shown in the figure
below:

EiLTEtON

Create spice netlist N

In the Library Manager window that appears, click on the Import Library Tool button as
shown in the figure below

fc pp5im Library Manager, |Z| |E| f5__<|
gunEEEEE N E gy,

.
CIDSE{' Import Library Tool t‘ Export Library Tool ‘

L4 L
L .
"Ysggppuunnnt®

'sue li* Operations: Add Library | Rermaove Librany ‘ schematic win. ‘ icant win. | icon2 wirn. ‘
Library Operations: Create | Renarne ‘ Dependencies ‘ Delete |
Module Operations: MOwvE | Dependencies ‘ Delete ‘
Library: |=itaial= ~1 Module: |overall_sd_gsynth_two_point_mad A
CppSimhi sd_synth
CEviCes sd_synth_fast
CDR_Examples | sd_synth_fast_simulink
DFE sd_synth_tristate
Digital_Synth_Examples sd_synth_tristate_fast =
DLL_Examples w sd_synth_tristate_int_sd_fast v
Result:

------- NOTE: vOUWILL NEED TO RESTART 5UEZ ONCE YOU ARE -
------- FIMISHED W TH LIBRARY MANAGER OPERATIONS --—----

e Inthe Import CppSim Library window that now appears, you should see
neural_net_example.tar.gz appear as a Source File/Library as shown in the figure below. If
you do not see this file, it means that you need to place it in the c:/CppSim/Import_Export
directory.

il Import CppSim Library |Z”E|El

Close ‘ Preview | Import

Destination Library: [MewLib

Source Directory; Browse |C'ICppSimflmpurt_E}:pur‘c
) - LN |
Source File/Librad” [2
’..

.
"tsangammnmnnnnt?

Result:
——————— NOTE: YOUWILL NEED TO RESTART SUEZ ONCE YOU ARE -—-—-——--
——————— FINISHED WITH IMPORT TOOL OPERATIONS —

ALSO: Mote thatyou can import libraries from a CppSim (Yersion 2)
installation by choosing 'Source Directory' a3 the bhase
directary location of that installation (i.e.. c/CppSim_old)
by using the 'Browse' button ahove

e Change the Destination Library to Neural_Net Example as shown in the figure below.
Once you have done so, you need to re-click on the neural_net_example.tar.gz file to select
it, and then push the Import button. After the modules have been imported, exit from Sue2

and then restart it.

" Import CppSim Library

Close Preview Import
L]

e,

Destination leu,ary |Neural Met Example ‘_"

"ssssamgusannt?®
Source Directory: Browse |C Cppsimdmport_Export

Source File/Library: |gEEgE] By EEE] =R H6

Result:
——————— NOTE: YOUWILL NEED TO RESTART SUEZ ONCE YOU ARE -—-—-——--

——————— FINISHED WITH IMPORT TOOL OPERATIONS ——-

ALSO: Mote thatyou can import libraries from a CppSim (Yersion 2)
installation by choosing 'Source Directory' a3 the bhase
directary location of that installation (i.e.. c/CppSim_old)
by using the 'Browse' button ahove

Highlights of Example

We will now work through the example that was contained in the neural_net_example.tar.gz file. To
complete this example, you will need to have access to Matlab, Simulink, and an appropriate C++
compiler for compiling Matlab mex files and S-functions (such as Microsoft Visual C++ Version 6 or

later).

A. Schematic of Neural Node

e Within Sue2, click on the Library portion of the Schematic Selection Box and choose
Neural_Net_Example as shown below.

40

a I/Meural_MNet_Example § 4°

neuron_node

e Click on the neuron_node cell in the above window. The Sue2 schematic window should now
appear as shown below.

' SUEZ: neuron_node (schematic) --- C:fCppSim/SueLib/MNeural _Net_Example/neuron_node.sue

File Window Edit Tools |

lalE &

gain=gain

gain=gain2

e In the above schematic, note that there are three inputs (in_a, in_b, and in_c), two outputs (outl
and out2), and two parameters (gainl and gain2). While we have chosen a very simple set of
gain blocks and adders for the node shown in the above window, one can create neural nodes of
arbitrary complexity.

B. Overall Network Topology

e The overall neural network is composed of the interconnection of the above nodes with each other,
the overall input to the network, and the overall output of the network. As shown in the figure

below, the number of input and output elements is assumed to be the same as the number of nodes
in the network. The choice of interconnections between nodes, input, and output, as well as their
strength, are set according to files as will soon be discussed. The setting of parameter values for
each node is also set according to a file. Note that node inputs as well as the overall output
elements can connect to an arbitrary number of node outputs and input elements, and the strength
settings can also be arbitrarily set.

in[0]

in[1]

where: N = num_nodes

C. Specification of Network Interconnection

e As our starting point in explaining the interconnection specification, let us examine the Simulation
File for our example. In the Sue2 window, click on Tools and then the CppSim Simulation menu
item as shown in the figure below.

' SUE2: neuron_node (schematic) --- C:fCppSim/SuelibMNeural_Net_Example/neuron_node.sue

P B \d =‘
File Window Edi'f,.lnnls L,

LibEary Wereeen ., ,

ot

gain=gain

e Within the CppSim Simulation window that appears, click on Edit Sim File button as shown in
the figure below.

" CppSim Run Menu --- cell: neuron_node, library: Neural_Net_Example g@g|

EEEEEENy
Close | Kill Run | Synchrumfg‘ Edit Sim File | J8etlist Only | Compile/Run ‘

Sim Mode: CppSim —

Sim File: test.par —

Fesult. = cell: neuron_node (Library. Neural_Net_Example) =

Donel

Hierarchy File: test.hier_c

C add?? (cppsim

C cpp_internal_int_to_double_conwert (cppsim)

C cpp_internal_double_to_int comwert (cppsim)

C cpp_internal_double_interp_to_int_convert (cppsim)
C gain (cppsim)

e Inthe Simulation File Emacs window that appears, as shown below, notice the top_param: and
simulink_neural_net_get: commands which are circled. There are several details that will be
important in understanding how to set parameter values and interconnections.

(0]

In the top_param: statement, notice the order of parameters is gainl and gain2, which is the
key characteristic of interest. The values of the parameter settings, in this case gainl=1e3 and
gain2=1e6, are of no consequence since they will be overwritten by the settings specified in a
file.

In the simulink_neural_net_gen: statement, there are many settings to consider. The first
thing to note is that the values of these settings are sometimes specified as ?, which indicates
that the value must be specified in the Simulink block that will be created. This is
advantageous in cases where several Simulink blocks will be instantiated and there is a desire
to change such settings between these blocks. In cases where the settings will remain
constant across different blocks, the value should be set in the statement below and not by
using the ? symbol. As an example, the interconnections and interconnection strengths for the
overall output are specified in the file out.dat, and the interconnections and interconnection
strengths for input in_a in each node are specified in the file in_a.dat, whereas the parameter
setting file will be specified in the Simulink block.
o Further explanation is merited of the specifications out1=1 out2=2. For nodes with more

than one output, a number designation is required for each output in order to identify it in

the interconnection file. The number designation must proceed in integer increments
starting at value 1, as seen in the above specification.

0 Another item of interest is Ts, which corresponds to the time step value that will be
applied to each node when simulating it in Simulink. Note that the statement of Ts: 1/1e6,
which is specified earlier in the Sim File shown below, is ignored when creating the
Simulink block for the overall neural net.

V" C:ICppSimiSimRuns/MNeural_Net_Example/neuron_node/test. par
File Edit Options Buffers Tools Help

! m

L

m

=C .F|111'. E:.i"l";ll_l_...! .
W0 alest BB 01 xilz. 114.311£.nul "'--....
L - ']
gye®itl outz

. . A rem T =
top param: gainl=1led gaind=lef
simulink neural net gen: nwn nodes=? parasmm £ile=7

in_h_file=? in_c_file=in_c.dat

.
.
““

.

D. Running the Example in Matlab/Simulink

We will now run the example in Matlab/Simulink. It is assumed that you have already installed an
appropriate C++ compiler on your system to support mex and S-Function compilation in Matlab. An
example of an appropriate compiler is Microsoft Visual C++. It is also assumed that you are working
with a reasonable recent version of Matlab (i.e., Matlab 7.0 and above).

e Start up Matlab and then perform the following operations at its command line:

w
0‘ .0

o0 addpath(‘c:\CppSim\CppSimShared\HspiceToolbox’)
0 cd c:\CppSim\SimRuns\Neural_Net_Example\neuron_node

The first of the above commands adds Matlab commands for running and compiling CppSim
blocks within Matlab. The second of the above commands sets the current Matlab directory to the
appropriate place to run and compile the cell neuron_node into a neural network that will then be
embedded within a corresponding Simulink block. As you work with different base nodes and
their corresponding networks, you will need to change this directory. In general, the working
directory will be: ¢:\CppSim\SimRuns\LIBRARY_NAME\CELL_NAME. In this case,
LIBRARY_NAME is Neural_Net_Example, and the CELL_NAME is neuron_node.

Now that you are in the appropriate directory, run the following command in Matlab:
0 cppsim2simulink

This command generates the C++ code corresponding to the network and then compiles it into a
Simulink S-function. The Matlab window should now appear similar to the figure shown below.
Note the listing of parameters as circled below — each of these correspond to the settings that were
marked as ? in the simulation file described in the previous sub-section. The order of these
parameters will be important when defining the Simulink block, as discussed below.

It is important to note that cppsim2simulink must be rerun each time the CppSim Simulation File
is changed or the node schematic (ie.., for neuron_node in this case) is altered. It does not need
to be re-run when you change the contents of the files that designate interconnections and
parameter values for the network.

=} MATLAB 7.4.0 (R2007a)

‘

File Edit Debug Desktop Window Help
D Iﬁ: clflo @ K E ﬂg @ @ c:heppsim SimRunsiMeural_Met_Exampleineuron_node - [Z]

Shortcuts [#] How bo add [#] What's Mew

@ To get skarked, select MATLAR Help of Demos from the Help menu. »

o compiling ... -
. adding path: 'e:leppsind SinPuns\Neural Net Example’\neuron node/MNatlsk!

FEEEFF Note: tLo use 3-Function within Simulink: ##&%#%%

1) Drag 'S-Function' block fromw Sirulink Library Browser to vour model and double-—
2) Enter 'neuron node s' for '3-function name:'

3 Enter qmm&at&'ﬂafﬂﬂ Tht'iﬁsfuqqtlun parameters: !

—.-“Slmullnk Elock 'neuron node =' --—- ".,.

Para.meters Ts, num nodes, param file, in_h_flle.'o‘

Inputs: in (Vector of length 'mun hodes') :

outputs: out [(Vector of length 'num nodes') ‘00
rt;zrw1-1-***************#w************ DDnE! :}‘i‘f‘%‘********#*##*w**************

. r ll.l.................-...-----.--l‘ v
£ >

|4 5t

10

Now run the following command in Matlab:

O create_tables

This command generates files that are used to specify the interconnection of the network. We will

discuss this function in further detail in the next section.

Now start up Simulink from Matlab, and open the Simulink file test_neuron.mdl (which is
located in c:\CppSim\SimRuns\Neural_Net_Example\neuron_node). You should see the system

shown in the figure below.

E! test_neuron

File Edit “iew Simulation Format Tools Bkl

B[=1E

O =2 EdE d—' L) Fe-G 32
Y
ﬁU
.
Sine Wave
Scope
EEI—bneumn_nnde_s 4>|:—b|:|
Fulse S-Function Scoped
Generator
|
W Scope?
Repeating
Sequence w
Ready 100%: ode4s

Double-click on the neuron_node_s component. You should see the window shown below. Note

the S-function parameters, which correspond to the Simulink Block parameters discussed on the

previous page:

0 Ts=1e-8, num_nodes=3, param_file="param.dat’, in_b_file="in_b.dat’

11

E! Function Block Parameters: 5-Function

S-Function i

Ilzer-definable block. Blocks can be wtten in C, M [level-1], Fortran, and Ada and
st canfarm to S-function standards. The variables b, %, w, and flag are
automatically pazzed to the S-function by Simulink. You can zpecity additional
parameters in the "S-function parameters’ figld. IF the S-function block requires
additional zource files for the Real-Time “workshop build process, specify the
filerames in the 'S-function modules’ figld. Enter the filenames anly; do nat use
extenzionz or full pathnames, e.q., enter 'src 2rcl’, ot 'srcoc el .ol

Parameters

S-function name:; | [N gels =

| Edit

S-function parameters; |1 &3 3 'param.dat’ in_b.dat’ |

S-function modules: | |

v
£ *

I ok l [LCancel] [Help] Apply

e Click on OK in the above window, and then start the Simulink simulation. The scope windows
should appear as shown below (once they are auto-scaled).

EIBIE] - scopet EIBIBK) -~ scope CBX
& PPL ARBEASR -J8E QPP ABRB BAR ~|S5ELLHL ABE PAF

Floating scope

Time ¢

Specification of the Neural Net Interconnection

Now that we have run through the highlights of the example, we will focus our attention on details
relating to specification of the interconnection of the nodes to form the overall neural network. This
specification is performed through files whose names are specified in either the CppSim Simulation
File or as Simulink Block parameters (i.e., when ? is used to specify the value of the parameter within
the CppSim Simulation File, as discussed earlier in this document).

In general, you will need one file for each input and output that are specified in the node schematic
(i.e.,in_a, in_b, in_c and outl, out2 in this case) and one file to designate parameter values for each
node. We will now cover the format of these files in this section.

e Assuming you have just run the example from the previous section, type the following command
in Matlab:

12

O edit create_tables

You should see an edit window similar to what is shown below, which displays the
create_tables.m Matlab script.

& Editor - C:\CppSim\SimRuns\Neural_Net_Example\neuron... E@E|
File Edit Text Go Cell Tools Debug Desktop Window Help WA X

D HE {BRRBoe S dad 5 & >0
Z (BB iB| -[1o0 |+ | #[11 |x |58 @
1 function create takbles () TDl
2
3 — num nodes = 3;
4
S5 — param = repwat([3 10],num nodes, 1) ;
6 — 2ZSave paraw to file(param, 'parsm.dat']:
7
g — in & = repwat ([0 O 1.0],nuwnm nodes, 1) ;
9 - zave_to fileiin a,'in a.dat']:
10
11 - in b = repmat ([0 O -1/4 0 1 1.0] ,num nodes, 1) ;
12 = sgve_to_file(in b,'in b.dat'];
13
14 — in & = repmat ([0 2 1.0 1 2 0.02],num nodes,1];
15 = =save_to filejin c,'in c.dat');
1la
17 — out = zerosinum nodes, 3 ; W
create_tables Ln 3 Col 15

In the above Matlab script, you will notice that there are two custom functions that are used
throughout the script: save_param_to_file() and save_to_file(). This functions are defined at the
end of the script, and simply store the contents of the input matrix to a corresponding ASCII file.
For large matrices, one may need to write faster versions of these functions since they are
relatively slow in their execution speed. For small matrices as discussed now, these scripts should
be sufficient.

The first matrix that is saved corresponds to the parameters of the node. These parameters are
specified in the top_param: statement of the CppSim Simulation File, as shown on page 8. For
this example, recall that this statement was:

0 top_param: gainl=1e3 gain2=1e6

As mentioned earlier, the actual values (i.e., 1e3 and 1e6) are ignored, and only the order is of
consequence (i.e., gainl, gain2). In examining the Matlab script above, notice that each node is
fed two parameter values (i.e., [3 10]). Specifically, given the above top_param: statement, this
translates to setting gain1=3, gain2=10 for each node. While each node is fed the same parameter
values in this particular example, they can be arbitrarily set for each node in practice.

13

In general, the parameter matrix should appear as follows:

Node 0 | paramg paramy paramy_
Node 1 | paramg paramy paramy_

Node N-1 | paramg param, paramy;_4

Note that we have assumed that there are M parameters in this case, and num_nodes = N.

The second matrix that is saved corresponds to the input signal in_a. In this case, three values are
specified for each node (i.e., [0 0 1.0]). In general, these values may be different for each node,
and follow the following template:

in_x of Node 0 | sig_type sig_num strength :sig_type sig_num strength
in_x of Node 1] sig_type sig_num strength :sig_type sig_num strength

1
in_x of Node N-1 | sig_type sig_num strength :sig_type sig_num strength

0 sig_type: takes on values 0, 1, 2, ... which correspond to the overall input, outputl of the
node, output2 of the node, etc.

0 sig_num: takes onvalues 0, 1, ... num_nodes.

0 strength: takes on a real value representing the strength of this connection.

o Example: [sig_type sig_num strength] = [0 2 1.0] corresponds to a connection from
element 2 of the overall input with strength 1.0

o0 Example: [sig_type sig_num strength] = [1 0 2.0] corresponds to a connection from
outputl of node O with strength 2.0

o Example: [sig_type sig_num strength sig_type sig_num strength] =[01-1.521.5]
corresponds to a connection from element 1 of the overall input with strength -1.5 added
to a connection from output2 of node 1 with strength 0.5

Note that you can define as many connections per node as you like, but the overall matrix must
be square. Therefore, if you want to have less connections for a particular node compared to
other nodes that have more connections, simply set the difference in connections to have
strength 0.
The last matrix that is saved corresponds to the overall output of the neural network. The format
of the matrix is the same as that used for inputs, namely:

14

Out 0
Out 1

Out N-1

_sig_type sig_num strength :sig_type sig_num strength .
sig_type sig_num strength :sig_type sig_num strength .

sig_type sig_num strength :sig_type sig_num strength .

15

	Introduction
	Importing the Example
	Highlights of Example
	A. Schematic of Neural Node
	B. Overall Network Topology
	C. Specification of Network Interconnection
	D. Running the Example in Matlab/Simulink

	Specification of the Neural Net Interconnection

