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An Efficient Approach to ARMA Modeling 
of Biological Systems with Multiple 

Inputs and Delays 
Michael H. Perrott and Richard J. Cohen,” Member, ZEEE 

Abstract-This paper presents a new approach to AutoRegres- 
sive Moving Average (ARMA or ARX) modeling which auto- 
matically seeks the best model order to represent investigated 
linear, time invariant systems using their inputloutput data. The 
algorithm seeks the ARMA parameterization which accounts for 
variability in the output of the system due to input activity and 
contains the fewest number of parameters required to do so. 
The unique characteristics of the proposed system identification 
algorithm are its simplicity and efficiency in handling systems 
with delays and multiple inputs. We present results of applying 
the algorithm to simulated data and experimental biological data. 
In addition, a technique for assessing the error associated with 
the impulse responses calculated from estimated ARMA parame- 
terizations is presented. The mapping from ARMA coefficients 
to impulse response estimates is nonlinear, which complicates 
any effort to construct confidence bounds for the obtained im- 
pulse responses. Here a method for obtaining a Zineurizution of 
this mapping is derived, which leads to a simple procedure to 
approximate the confidence bounds. 

I. INTRODUCTION 
IVEN a mathematical description of a physical system, G one can analyze its overall behavior and predict the 

response of its output to different inputs. The difficulty, 
however, lies in determining such a mathematical description. 
Indeed, although one can derive a model for some simple 
systems (such as electric motors) using Newton’s laws, there 
are many systems whose outright complexity makes such 
a task impossible. In such cases, one has to resort to the 
numerical techniques of system identification [ 11. 

In attempting to determine empirically the mathematical de- 
scriptions associated with linear, time invariant (LTI) systems 
[2] ,  the AutoRegressive Moving Average (ARMA) model, also 
referred to as the ARX model [ 11, is a highly flexible structure 
that can be used to parameterize the dynamics of such systems. 
Applied in a system identification context, the ARMA model 
has been used extensively to represent the dynamics of a wide 
range of systems that involve everything from brain potentials 
[3] to the wingtips of sailplanes [4]. 

To illustrate the basic issues associated with ARMA model- 
ing, consider a two input LTI system whose inputs are 21 and 
2 2 ,  and whose output is y. The corresponding ARMA model 
is denoted in difference equation format as follows: 

g [ n ]  = - L a;y[n - i ]  + fl b l p l  [n - jl 

i=l j = = S l  

fi 

k=s2  

In this equation, the ‘a’ coefficients correspond to the autore- 
gressive (AR) parameters, while the ‘b’ coefficients are moving 
average (MA) parameters. The sequence e[.] is assumed to be 
white, Gaussian noise [5] with variance E(e[nI2) = u2. Note 
that the inputs (i.e., 21 and 2 2 )  are assumed to be known, 
which distinguishes the estimation procedure we will address 
from that of the ARMA modeling examined in Spectral 
Analysis literature such as [6, ch. 161 , where the input is 
assumed to be unknown. 

In attempting to represent the given ‘physical’ system with 
such a model, two fundamental issues arise 

1) Estimation of the model order [i.e., the values of 

2)  Estimation of the parameter values once the model order 
is known [i.e., the values of the ‘a’ and ‘b’ coefficients 
in (l)]. 

Fortunately, item two in the above list is straightforward- 
once the ARMA model order is known, the least squares 
technique [7] can be used to estimate the ARMA parameters. 
However, determination of the model order is much more 
difficult. If the model is overparameterized (i.e., has higher 
order than necessary), than the impulse response estimates 
calculated from the resulting ARMA parameters will be overly 
sensitive to corruption by noise. An underparameterized model 
will lack the degrees of freedom necessary to represent the 

(4  31, f l ,  s2, f 2 )  in (1>1 

dynamics of the corresponding physical system. 

last few years that attempt to identify the ‘best’ ARMA 
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orthogonalization. Batill and Hollkamp developed a two stage 
algorithm to estimate AR and MA parameters separately using 
free-response and forced response data, respectively [9]. The 
same researchers also described a technique in [4], which they 
refer to as the reduced backward method, that attempts to 
reduce the order of an initially overspecified ARMA model 
by writing it backward in time. Wahlberg proposed to reduce 
the order of high-order ARX estimates by means of model 
reduction via a frequency weighted balanced realization in 
[ 101 (his definition of the ARX model and our definition of the 
ARMA model are equivalent). Finally, Liang et al. described 
an efficient ARMA model order estimation procedure based 
on evaluation of the MDL criterion using the eigenvalues of 
the parameter covariance matrix [ 1 11. 

Unfortunately, none of the above techniques consider 
systems with multiple inputs or delays [The simplest 
form of delay amounts to having s1 or sa # 0 in (l).] 
In fact, to our knowledge, no automatic procedure exists 
to identify the ARMA model order associated with such 
systems. However, an enormous number of physical systems 
have delays associated with them, from biological [12] 
to electrothermal systems [ 11. 

To deal with delays, Ljung has suggested an interactive 
procedure in [l] that relies on the user to gradually infer 
the correct order using the estimation results of previously 
guessed models. Unfortunately, such an interactive procedure 
can be very cumbersome and time consuming, especially when 
dealing with large numbers of data sets. However, Ljung gives 
useful practical advice in [13] to the user who must deal 
with systems containing delays; namely, incorrectly estimated 
delays are visible in calculated ARMA models. In essence he 
claims that if s1 and/or s2 are chosen to be too small in an 
estimated ARMA model, resulting in underestimated delays, 
then the leading ‘b’ coefficient estimates are small compared 
to the standard deviation of the error associated with them. 

A new algorithm will be presented in this paper that 
automatically estimates the ARMA model order associated 
with systems that are allowed to have multiple inputs and 
delays. The underlying approach of the algorithm is much 
in the spirit of Ljung’s practical advice - the results of 
an overparameterized model are used to infer the order of 
the best ARMA parameterization that describes the system. 
In terms of performance, the algorithm is simple and fast. 
Results obtained with simulated and experimental data appear 
extremely promising. 

The basic requirements of the presented algorithm are 
that input and output data sequences associated with the 
unknown system be provided, and that the user choose an 
initial overparameterized ARMA model. In order for the 
algorithm to perform well, the input data must be ’persistently 
exciting’ [l] of order greater than or equal to the order of the 
initial, overparameterized model -this condition is satisfied if 
the inputs are independent and white. In practice, the condition 
of persistence of excitation will often be satisfied if the inputs 
are independent and broadband. 

In addition to the proposed ARMA modeling procedure, a 
technique is briefly discussed (and derived in Appendix A) to 
estimate the confidence bounds associated with the impulse 

response estimates that result from the obtained ARMA es- 
timates. To the authors’ knowledge, no procedure currently 
exists to determine such bounds. However, the impulse re- 
sponse estimates that result from ARMA modeling can provide 
extremely valuable insights since time domain characteristics 
such as time constants and time delays of the system are read- 
ily observed [ 121. It is confusing to examine individual ARMA 
parameter errors to assess the error in the impulse response - 
there are often many parameters and their errors affect the 
impulse response estimates in a nontrivial way. Therefore, we 
feel that the proposed numerical technique, which provides 
a quick and intuitive measure of the accuracy of impulse 
response estimates calculated from an ARMA model, will be 
an important contribution to the area of biomedical signal 
processing. 

11. BACKGROUND 

A. The ARMA Model 

We begin by establishing some basic definitions associated 
with the Multi Input, Single Output ARMA model. For con- 
venience, we will limit discussion to the two input ARMA 
model - the extension of results to systems with more inputs 
should be clear. 

Referring to (l), we restate the ARMA model in terms of 
its Z-transform [2] as follows: 

A(z)!Az) = &(z)51(z) + Bz(z)52(2) + 4%). (2) 

in which we have defined the following: 

k=sl 

f7 L 

k=sz k = l  

From (2), we then define the following input to output transfer 
function relationships 

Although e ( z )  is assumed white and Gaussian, the ARMA 
model can be applied in the presence of nonwhite noise 
given that certain conditions hold. Specifically, if e(%)  = 
C ( z ) / D ( z ) n ( z ) ,  where n ( z )  is white, Gaussian noise, then 
( 2 )  can be modified as 

A(z)y(z) = & ( z ) m ( z )  + &(z)+) + .(.) (5) 
where 

The A N A  model is capable of approximating the above 
system provided A( z )  , B1(z) , and 3 2  ( 2 )  can be approximated 
by finite polynomials in z .  This condition is satisfied if l/C(z) 
is strictly stable [2]. 
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B. Model Comparison 

Considerable research has been done regarding the com- 
parison of different model parameterizations [ 11, which has 
led to the proposal of several information theoretic criteria. 
The most popular of such criterion include Akaike’s Theoretic 
Information Criterion (AIC) [ 141 and Rissanen’s Minimum 
Description Length (MDL) [ 151. In regards to the effectiveness 
of these techniques, the reader is referred to [ l l ] ,  [16]-[20]. 

The algorithm presented in this paper can be implemented 
with any criterion that makes use of ‘residual error norms’ [ 11, 
which includes both AIC and MDL. In addition, a hypothesis 
testing approach can be used. This paper will present results 
using MDL, with the reader being referred to [21] for a 
description of the approach taken with hypothesis testing. The 
results of this paper are easily extended to the AIC criterion. 

To use the MDL criterion to evaluate a given model’s per- 
formance in comparison to other models, one simply obtains 
an MDL value for the model, MDL(k), as follows: 

N (7) 

which is an approximation given in [13] to the formula 
presented in [ 151. In the above formulation, k is defined to 
be the number of parameters contained within the model, N 
the number of samples contained in the input and output data 
sets, &k the prediction error sequence [I], and 1 1  . 1 1  the /2 

norm [22]. Note that I ~ E ~ I I  is referred to as the ‘residual error 
norm’ in this paper. Any given model is said to perform better 
than all models whose MDL values are greater than its own. 
Thus, selection of a model using the MDL criterion amounts 
to finding the model among the candidate set which has the 
minimum MDL value. 

C. Selection of Candidate Model Set 
A thorough selection of candidate models to be compared 

using any of the above criterion leads to a computationally 
intractable problem when dealing with high order LTI systems 
containing delays. To explain why the allowance of delays 
causes so much difficulty, we first mention the standard 
assumptions made for selecting ARMA models to represent 
systems without delay, namely 

AR parameters: 

a; # 0 for i  E [I, L]; ai = 0, elsewhere. 

MA parameters: 

b l j  # 0 for j E [O, L] ,  
bzk # 0 for k E [O, L]; blj  = bZk = 0, elsewhere. 

Selection of a candidate set of models under the above 
assumptions follows quite easily - the value of L is simply 
varied over a range that is deemed to be suitable. 

Unfortunately, the above assumptions made on the MA 
parameters in ARMA modeling break down for systems with 

delays. In such cases, an appropriate set of constraints for 
these parameters is 

MA parameters: 

bl, = 0 f o r j  [Sl, fll 

b2k = 0 fork Sr [SZ, f21. 

The subtlety underlying the above assumption is that we not 
only lift the previous restriction that s1 = s2 = 0, but we also 
allow b l ,  and bZk to equal zero within the range J’ E [SI, fl] 
and k E [sa, f 2 ] ,  respectively. Thus, we allow for the nonzero 
MA parameters to be some combination of the total number 
of MA parameters contained in the sets j E [SI, fl] and 

Under the new MA constraint, the user now has to worry 
about varying 5 parameters, namely { L ,  sl, s2, fl, fi}, as well 
as the various MA parameter combinations possible with 
whatever values of { s1 , s2, fl , f z }  are eventually chosen. To 
illustrate the computational complexity associated with such 
a search, consider the number of combinations that must be 
evaluated if we choose some maximum range over which to 
search. If we set minimum values for s1 and s2, and maximum 
values for fl,f2, and L, and then define k,,, as 

k E [ s 2 , f 2 ] *  

kmax = Lmax + fim,, - Slmzn + f2maz - SZmzn + 2 

then the total number of parameter combinations to be 
searched over to determine which ARMA coefficients are 
nonzero is approximately 2 k m a = .  If kma, were even a modest 
value such as twenty, this would lead to over a million 
combinations to be compared. 

Strictly speaking, in order to determine the optimal ARMA 
parameterization associated with a system with delays, all 
possible parameter combinations must be compared, and the 
problem becomes intractable for high order systems. However, 
we will present a simple technique in the remainder of this 
paper that overcomes the computational complexity through 
a suboptimal, but very effective, approach. The key to our 
approach rests in developing an intelligent procedure to select 
candidate parameter combinations. 

111. METHODS 

To explain our proposal for an intelligent model selection 
procedure, we will first recast the ARMA model into a matrix 
structure, and examine how least squares forms the parameter 
estimates. Using the results of this discussion, we will then 
present a technique by which the estimation results of an 
initial, overparameterized model are incorporated to produce a 
set of lower order candidate models. Comparison of the models 
in this set leads to the selection of a model order to represent 
the system. 

A. The Matrix Format of the ARMA Model 
Referring back at the definition of the ARMA model given 

in (l), it is observed that the AR and MA parameters act on 
a known set of data (i.e., collected input and output data) to 
form each output value, with e[.] acting as an unknown noise 
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source. Collecting the known data, we define a ‘data vector’ 
associated with any specified y[n] as follows: 

4t[.lT = [Qb - s11 
...x1[n-.f1] I . , [n -s2] . ‘ . zz[n- f2]  I dn-11 
. . . y[n - L]]. (8) 

Similarly, we collect the AR and MA terms into a ‘parameter 
vector’ 

0: = [bi,, . . . bi,, I b2s2 . . . b 2 ,  I ai . . . U L ] .  (9) 

Note that t corresponds to the dimension of Bt (i.e., to the 
number of nonzero parameters in the ARMA model). Making 
use of these definitions, we rewrite (1) as 

y[n] = dt[nlT& +e[.]. (10) 

Assuming that N samples have been collected of the input 
and output sequences, this data is incorporated into the above 
equation by incrementing n through the N sample values (i.e., 
0 5 n < N )  as follows: 

Using these definitions, the relationship between all of the 
empirical input, output, and noise data is written for the 
ARMA model as 

y = + e .  (12) 

B. Estimation of the ARMA Model 

Suppose that (12) represents the actual or ‘true’ parame- 
terization of an investigated physical system. (In reality, most 
physical systems are too complicated to be precisely described 
by a finite parameter A N A  model, so that et would be better 
interpreted as a ‘best’ parameterization according to some 
performance criterion.) Since the parameters contained within 
&, along with their values, are unknown in the context of 
system identification, it is necessary, in practice, to specify an 
equation that describes an ‘estimation model’ selected by the 
user, namely 

In the above equation, 8, represents the k ARMA param- 
eter estimates, and &k is the corresponding prediction error 
sequence. 

There are three possible scenarios that may occur when the 
user selects an estimation model to represent a given system 
k > t ,  k < i, and k = t. For the sake of simplicity in notation, 
we denote k = t to mean that the parameters contained 
in 0, are precisely those in Bt.  If k is chosen to be larger 
than t ,  there will be ‘extra’ parameters within 6, which are 

defined to be those parameters in the estimation model that 
are not in the actual model being sought after. These extra 
parameters serve only to make the overall estimation model 
more sensitive to noise. The second scenario, namely k < t, 
leads to an estimation model that does not include all of the 
true parameters, and therefore lacks the degrees of freedom 
necessary to represent the system. The last scenario, k = t ,  is 
obvilously the desired choice. 

In order to find the estimation model for which IC = t ,  we 
propose an approach that incorporates estimation results from 
an arbitrary, overly specified model. Thus, we initially choose 
k as some arbitrary, large number such that k >_ t and define 
this as the ‘maximal model’. A technique will be presented 
that then attempts to remove the extra parameters from 0,. 

C. The Least Squares Procedure 

Given that the initial value of k has been chosen, the 
parameter estimates 8, are calculated with the least squares 
procedure [7]. T h i s  operation is described compactly for the 
ARMA model as 

e, = (@;Q,)-l@:y. (14) 

If we are to compare the chosen maximal model with the true 
model, it will be necessary to augmnent the Bt vector with the 
extra, parmeters contained within 0,. For this purpose, (12) 
is modified as follows: 

(15) 

where those parameters in 8, that are not in et have a value 
of zero by definition. 

y = @,elc + e 

Combining (14) and (15), we obtain 

4, = 8, + v k ,  where Vk (+;+,)-’+re. (16) 

The above expression shows that the parameter estimates, e,, 
are formed as the addition of the true parameters, B,, and a 
corrupting noise vector vk, whose autocovariance matrix is 

E(v,vT) = 02(@;S@,)-1. (17) 

The diagonal elements within the above matrix correspond 
to the variance, or ‘average energy’, of the individual ele- 
ments within vk, which, in general, varies from parameter to 
parameter. 

D. Dejining a SIN Ratio 

Our concem lies in determining which parameters within 
8, are true (i.e., have an actual value that is nonzero). 
Intuitively, the larger in magnitude a parameter estimate is, 
the less likely it has an actual value of zero. Thus, it seems 
reasonable to compute the likelihood of each parameter being 
true lby comparing their estimated magnitudes - parameters 
with large estimated magnitudes are more likely to be true 
than those with small estimated magnitudes. However, each 
estimate was shown to be corrupted by noise whose average 
energy varies from parameter to parameter (16). Therefore, if 
we are to compare parameter estimates, it is more appropriate 
to first normalize their values by the level of corruption 
occurring from noise. 
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If we think of the true parameter component, &, in each 
estimate as being the signal, and V k  as being the noise, then a 
‘signal to noise ( S / N )  ratio’ can be formed for each individual 
parameter as follows: 

where i designates the ith element of vector 6 k .  The rightmost 
approximation in the above equation is necessary since, in 
the context of estimation, the actual values of each parameter 
will be unknown. One can see immediately that the S/N 
ratio effectively normalizes each estimate by the amount of 
corruption occurring from noise. Therefore, we propose to use 
the SIN ratio of each parameter to compare the likelihood 
of each parameter being ‘true’. Parameter estimates with high 
SIN ratios will be considered more important than those with 
low SIN ratios. One should note that this approach has much 
in common with Ljung’s hint mentioned in the Introduction - 
if ‘b’ coefficient estimates are small compared to the standard 
deviation of the error associated with them, they are considered 
to be relatively insignificant. 

A point must be made clear regarding the limitations of 
the SIN ratio - it cannot be used to compare MA and AR 
terms. Such a comparison would be invalid since it would 
not be consistent under scaling of the input to output transfer 
functions. Explaining, it is easy to show via (2) that rescaling 
of the input to output transfer functions does not affect the 
parameter combination used to describe the system, although 
the MA coefficient values will be rescaled appropriately (the 
AR coefficients remain unchanged). Therefore, a consistent 
procedure that attempts to identify the correct parameter 
combination to represent an investigated system should be 
insensitive to the relative gain of each input to output transfer 
function. However, since the numerator of the SIN ratios 
are precisely the parameter values, increasing the gain of a 
given input to output transfer function will increase the SIN 
ratio of its MA coefficients, but not change the SIN ratios 
of the AR parameters. Thus, comparison of the AR and MA 
parameters via their S/N ratios would lead to different results 
under different levels of transfer function gain. 

E. A Model Selection Procedure 

To develop a consistent ‘intelligent’ model selection pro- 
cedure, we are forced to consider AR and MA parameters 
separately in terms of evaluating their relative likelihood 
of being true. We therefore present a two step process by 
which AR parameters are evaluated first, followed by the MA 
coefficients. This procedure was chosen on the basis that it led 
to a fast identification procedure and gave excellent results - 
the limitations of it will be given at the end of this section. 

An important point regarding the AR parameters is that they 
are unaffected by the presence of delays in the system. Thus, 
while delays cause ‘gaps’ to appear in the MA coefficients, 
which necessitates the comparison of combinations of these 
parameters, it is reasonable to hold to the simplifying assump- 
tion that no such gaps occur in the AR parameters. (If such 
gaps do occur in the AR parameters, than the AR order of the 

system will simply be overestimated by the number of such 
gaps. In practice, this case is rarely of concern). This translates 
to assuming that a, # 0 for i E [l, L] ,  implying that it is not 
necessary to look at combinations of AR parameters and that 
the value of L is the only item of importance. Following this 
assumption, we create an initial candidate set of models by 
simply varying L while retaining all the MA coefficients in 
the ‘maximal model’ (i.e., the models in this candidate set 
contain the same MA coefficients but progressively fewer AR 
Parameters). The MDL criterion is then used to compare the 
performance of each candidate model, and the best performing 
one is selected and defined as the ‘reduced model’. 

Using the ‘reduced model’ parameterization, the SIN ratios 
of the MA coefficients are calculated and then used to create 
another candidate set of models. To form this new set, MA 
parameters are removed one by one from the reduced model 
in order of greatest likelihood of being insignificant (i.e., MA 
parameters with low S/N ratios are removed before those with 
high SIN ratios). Thus, each model within this new candidate 
set contains the same AR coefficients but progressively fewer 
MA parameters. The MDL criterion is again used to compare 
performance of each candidate model, and that model with best 
performance is chosen and defined as the ‘minimal’ model. 
The minimal model is the algorithm’s best guess of the true 
model of the system. 

Pulling together the above facts, we now summarize what 
we will refer to as the ‘Anna Parameter Reduction’ (APR) 
algorithm 

Select a ‘maximal’ model - a model that is believed to 
include all the true parameters of the system. 
Remove the AR parameters from the maximal model 
one at a time in order of highest index (i.e., decrease L 
one increment at a time), creating a set of lower order 
models. 
Use an evaluation method (i.e., MDL) to choose a best 
performing ‘reduced’ model from among the set given 
by (2). Note that this step implicitly estimates the AR 
order. 
Calculate the SIN ratios of each MA coefficient in the 
reduced model parameterization. 
Remove the MA parameters one at a time according to 
their SIN ratios (low SIN ratios first), creating a set of 
lower order models. 
Use an evaluation method (i.e., MDL) to choose the 
best performing ‘minimal’ model from the set given by 
(4). Note that this step estimates the MA order, thereby 
establishing the overall ARMA order. 
note on the above procedure, the input data sequences 

should be prescaled to have the same average energy before 
any of the above steps are performed. This preliminary opera- 
tion eliminates problems that otherwise occur when comparing 
the SIN ratios of MA parameters associated with different 
inputs. 

F. Additional Issues 
It is appropriate to question the effectiveness of estimating 

the order of the AR and MA parameters separately. After all, 
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proper selection of the AR order is somewhat dependant on 
proper selection of the MA order, and vice versa. Although 
this is an issue of concern, it is our contention that the 
outlined procedure works extremely well in most cases. It is 
useful, however, to observe the conditions under which the 
AR parameter model order cannot be estimated separately 
according to step 3 outlined above, causing the algorithm 
to yield suboptimal results. Proceeding, we bear in mind the 
definitions of +k and 6 ,  given in (8) and (9) as we rewrite 
(13) as 

y = [ X  I ~~~~! + E .  (1% 

Defining the terms in the above equation, X represents the 
columns in + k  corresponding to the MA parameter esti- 
mates contained in b, while Y represents the columns in 
@k corresponding to the AR parameter estimates contained 
in a. Now, simply stated, the AR order will be unaffected 
by the inclusion of extra MA parameters in 6 ,  during step 
3 of the APR algorithm if the column space spanned by 
the columns in X associated with the ‘extra’ MA parameters 
does not significantly overlap that of the columns in Y that 
correspond to the ‘true’ AR parameters. In other words, if the 
initial selection of the order of the MA parameters (in step 
1) is not so high that the extra MA coefficients are able to 
compensate for the model performance lost by removing true 
AR parameters (as judged by MDL in step 3), then the AR 
order estimation will be unaffected by the inclusion of those 
extra MA parameters. Otherwise, the AR order will have the 
tendency to be underestimated in step 3. 

In practice, it is difficult to analytically determine the 
highest initial MA order that can be selected without adversely 
affecting the AR order estimation (it will change from system 
to system). The maximum number of MA coefficients ever 
needed would simply span the entire duration of their respec- 
tive impulse response, which would lead to a MA model (i.e., 
no AR parameters needed). Thus, to create a need for the 
AR parameters, the MA parameters should span less than the 
duration of their respective impulse response. 

Extending the above discussion to the selection of the 
initial maximal model, we recommend the following. Initially, 
run the APR algorithm with an excessively large number of 
parameters (i.e., an AR order of 10 or higher will overly 
describe many systems, and the MA parameters should span 
what is thought to be the duration of their respective impulse 
response). The results of the algorithm may not be optimal 
for such a case, but will reveal a reasonable estimate of the 
duration of the impulse responses. Using this information, 
the APR algorithm should be run once more with the MA 
parameters reselected such that they span less than their 
respecive impulse response (the AR order can be left large). 
Since removal of excess parameters will tend to smooth the 
impulse response shapes (as discussed in the Section IV), 
a dramatic change in the shape of any impulse responses 
obtained from the second run of the algorithm is a strong 
indication that the associated MA order was chosen too low. 
In such case, the user should repeat the algorithm with the 

maximal model appropriately changed. A caveat to the above 
procedure is that in cases where the variance of e (the 
corrupting noise) is small, excessive overdescription of the 
AR parmeters can lead to a poorly conditioned estimation 
procedure [23] .  If that happens, the AR order should be 
lowered as necessary. 

A few final points are made regarding the APR algorithm. 
First, even in cases where the optimal parameterization of 
the system is not correctly selected, the model obtained 
by the APR algorithm will still be, in general, a better 
representation of the corresponding system than if a standard 
ARMA selection procedure is used. This claim is made on 
the basis that the APR algorithm chooses the set of models 
to be compared on an intelligent basis, whereas the means of 
choosing a set of models to be compared in the general method 
is, in most cases, arbitrary. Second, the requirements for the 
algorithm to work properly are minimal. The inputs must be 
‘persistently exciting’ [ 11, meaning they must be independent 
and broadband (preferably white), and a maximal model must 
be selected that includes all the true parameters. The constraint 
on the inputs is true for any system identification algorithm 
associated with LTI systems. The selection of a maximal model 
is inherently done in standard ARMA system identification 
algorithms since a finite set of models must be chosen by the 
user for comparison. The advantage of the APR procedure 
is that only one model needs to be selected by the user. 
Finally, the algorithm can be made extremely efficient (and 
therefore fast) by making use of the fact that the residual error 
norm values (which are required to compute MDL values) for 
the model sets chosen in items (2) and (4) can be calculated 
recursively, the derivation being provided in Appendix E. 

G. Confidence Bounds 

Once the ‘minimal’ model has been chosen by the APR 
algorithm, it is often desirable to calculate the impulse re- 
sponses corresponding to the estimated ARMA parameters. 
To gain an idea of the uncertainty in those responses, it is also 
desirable to calculate confidence boundaries about the resulting 
estimates. Unfortunately, while the error associated with the 
ARMA parameters can be readily calculated via (16), the 
mapping of this error to the corresponding impulse responses 
is nonlinear and therefore complicates any effort to construct 
their confidence bounds. 

Rather than seek an approach that exuctly estimates the 
impulse response confidence bounds, we derive a method in 
Appendix A by which these bounds can be approximated 
through a linearization of the mapping between ARMA 
parameters and their respective impulse responses. Since the 
analysis is done in Appendix A, we will simply make a few 
qualitative observations concerning the performance of the 
approach. Namely, the estimated confidence bounds obtained 
will be very close to the exact bounds if the corrupting 
noise has a small variance, in which case there is only a 
small amount of error associated with the estimated impulse 
responses (i.e., small perturbations to continuous, nonlinear 
functions are accurately linearized). Under such circumstances, 
the confidence bounds about the impulse responses will be 
very tight and accurate. As the variance of the noise increases, 
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the approximation degrades in its comparison to the exact 
bounds. However, despite such deviation, the obtained bounds 
will qualitatively reveal the fact that a large amount of error is 
associated with the estimates. Thus, the value of the presented 
technique is that it allows a quick and intuitive qualitative 
assessment of the accuracy of obtained impulse response 
estimates from ARMA models. 

Iv.  RESULTS 

We begin the Results Section by applying the APR algo- 
rithm to simulated data and then calculating the confidence 
bounds associated with the resulting impulse responses. Fol- 
lowing this exercise, we then present performance results of 
the APR algorithm applied to 100 different input/output data 
sets associated with the same system. Finally, we present the 
results of applying the algorithm to experimental respiration, 
blood pressure, and heart rate data. 

A. Application of the APR Algorithm to Simulated Data 

optimal ARMA parameterization is as follows: 
Consider an example ‘physical system’ with delays whose 

AR parameters: 

L = 2 : {ai, ~ 2 )  = {-1.2, 0.35) 

MA parameters: 

SI = 3 , f l  = 3 : (b13) = (-1) 

32 = 1, fz  = 4 : {hi, b22, b23, b24) = (1, 0 , 0, -1.3)- 

The corresponding input to output transfer functions for the 
above ARMA model are written as 

- i z - 3  

”(’) = 1 - 1 . 2 ~ - 1  + 0 . 3 5 . ~ ~  

The selection of the above system was motivated by the 
results of biological data we have encountered, as can be seen 
by noting the similarity between Fig. 4 (associated with the 
above system) and Fig. 6 (associated with experimental data). 
Thus, the example system is not completely contrived; rather, 
it is actually similar to systems of practical interest. 

To simulate the above system, we generated three uncor- 
related, white Gaussian noise sequences of length N = 200 
corresponding to the inputs q [ n ]  and x2[n] ,  and the noise 
sequence e[n] using the MATLAB software package. Each 
input was prescaled to have the same energy. Again using 
MATLAB, we ran these sequences through a simulation of 
the above system, producing a y[n] sequence as the result. As 
a measure of the corruption occurring in the output due to 
noise, we defined the signal to noise ratio of y as 

and scaled the variance of e[n] to a value such that the ratio 
was 1 in our simulation, which led to a2 = 3.11 (note that 
* in the above equation represents the convolution operation 
and h,[n] is the impulse response of l/A(z)). 

Number of Parameters - p 

Fig. 1. 
removal of the AR terms. 

Plot of MDL criterion applied to the candidate models produced by 

Now, beginning with step one of the APR algorithm outline, 

(22) 

This model was chosen to be only slightly larger than needed 
to include the true model in order that explanation of the 
algorithm would be clear and unencumbered. Performance of 
the algorithm with a larger maximal model will be discussed 
in the next section. 

Proceeding, we removed each of the AR parameters by 
decreasing L one increment at a time. The MDL values were 
then calculated for each of the resulting models, producing 
the bar plot shown in Fig. 1. 

Inspection of this plot reveals that the minimum occurs 
when the number of parameters equals 14 (i.e when 3 of 
the AR parameters are removed). Thus the reduced model is 
selected as 

we first specified a maximal model as 

{L ,  31, f l ,  s2, f 2 )  = {5,0,5,0,5). 

{ L ,  31,  f l ,  32 ,  f 2 )  = (2, 0, 5, 0, 5). (23) 

The estimation results of the reduced model were then used 
to form SIN ratios for each of the MA parameters. A bar 
plot of these ratios is shown in Fig. 2, inspection of which 
correctly suggests that b13, b z l ,  and b24 are the most likely 
parameters to be true. 

To form a new set of candidate models, we simply pro- 
ceeded to remove all of the MA parameters, one at a time, 
from the reduced model in order of least likelihood of being 
true (i.e., we first removed bz5 ,  then b z 2 ,  then bl,, etc.). 
Following removal of the MA parameters, the two remaining 
AR terms were also removed (first u2, then a1 - this was 
not necessary, but it does illustrate the effect of removing all 
the ARMA parameters on the MDL criterion). Thus, fourteen 
candidate models were created, for which residual error norms 
were calculated and the MDL criterion used to evaluate the 
performance of each. Fig. 3 reveals that the model with the 
minimum MDL value contains 5 parameters (i.e., 3 MA plus 
2 AR parameters). 

Since b13, b21, and b24 have the highest SIN ratios, the 3 
MA terms contained in this final selected model correspond 
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Fig. 2. 
‘reduced model’. 

Plot of the SIN ratios obtained for the MA parameters in the 
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Plot of MDL criterion applied to the candidate models produced by Fig. 3. 
removal of the MA terms. 

precisely to these terms. The ‘minimal’ model order for the 
system was thus correctly selected as 

* AR parameters: 

L=2 : { U I ,  a2}={-1.25, 0.43) 

* MA parameters: 

Using the above estimated ARMA parameters, we calcu- 
lated the corresponding impulse responses and then proceeded 
to determine their 95% confidence bounds using the method- 
ology derived in Appendix A. Referring to the appendix, our 
first step was to estimate the noise variance via (43), for which 
we obtained e2 = 3.29 (this was very close to the actual value 
of o2 = 3.11). Following this operation, we applied (42) to 
produce the plots shown in Fig. 4. One should note that the 

0.2, 1 

0 5 10 15 20 25 30 35 40 45 50 

n 

(b) 

Fig. 4. Plot of the estimated impulse responses (a) h;[n] and (b) &[n] 
with their 95% confidence boundary indicated by the dashed lines. The actual 
impulse responses, (a) hl[n] and (b) ha[n], are shown as a series of points. 

confidence bounds give a very accurate portrayel of the error 
associated with the estimated impulse responses. 

B. Statistical Evaluation of the APR Algorithm 
using Simulated Data 

To evaluate, in a statistical manner, the performance of the 
APR algorithm with systems that are exactly represented by 
ARMA models, we applied it to 100 different input/output 
data sets associated with the example system under 8 different 
values of S / N ( y )  and the choice of two different maximal 
models. As a measure of performance, we first show the 
success rate at which the APR algorithm correctly identified 
the ARMA parameterization in the above data. We then show 
that the average error of the impulse responses calculated from 
the minimal models selected by the APR algorithm in the 
above data was significantly lower than the impulse responses 
associated with the selected maximal models. 

In order to obtain the relevant input and output data, a 
computer was used to generate 100 different data sets of 
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TABLE I 
U T E  OF CORRECT MODEL ORDER SELECTION FOR THE EXAMPLE SYSTEM 

0.5 
0.75 

1.0 
2.0 
3.0 
5.0 

10.0 

S/N(Y) I correct selection S/N(Y) I correct selection 
0.25191% 0.25 184% 

91% 0.5 87% 
90% 0.75 87% 
90% 1.0 88% 
92% 2.0 84% 
91% 3.0 85% 
93% 5.0 86% 
94% 10.0 85% 

input and noise data. Each set consisted of independent, white, 
Gaussian XI,  x2 and e sequences of length 1000 samples, 
and each input sequence was prescaled to have the same 
energy. Since our desire was to evaluate the performance 
of the APR algorithm in estimating the optimal model order 
under different values of S / N ( y ) ,  its value was varied by 
appropriately prescaling the variance of e and then running the 
resulting sequence, along with the input sequences, through a 
simulation of the system of Section 1I.C in order to produce 
an output sequence. This process was repeated for all 100 data 
sets for each value of S / N ( y ) ,  creating a total of 800 data sets. 

The success rate of the APR algorithm in correctly estimat- 
ing the model order of the system in each of the 100 data sets 
under each S / N ( y )  value is tabulated in Table I. The leftmost 
portion of this table indicates the percentage of correct model 
order estimations (out of 100 data sets) made by the APR 
algorithm under each S / N ( y )  ratio with the maximal model 
selected as {5,0,5,0,5}. Similarly, the rightmost portion 
indicates the results obtained with a maximal selected as 
{10,0,9,0,9}. The time taken by the APR algorithm to 
estimate the model order and parameter values associated with 
a typical data set (1000 samples) when the maximal model was 
selected as { 10,0,9,0,9} was 12 seconds on a Sun SPARC 
station IPX. When the maximal model was set at {5,0,5,0,5}, 
that time was reduced to 7 seconds. 

There are several important observations to make regarding 
the above results. First, it should be noted that performance 
went down when the order of the selected maximal model 
increased, but not drastically. Thus, in this case, the choice of 
a severely overparameterized maximal model still yielded ac- 
ceptable results. Second, the performance was very consistent 
over a range of S / N ( y )  ratios. Thus, model order estimation 
was very robust in this case to changes in S / N ( y )  and to the 
choice of a maximal model. 

Although it is reassuring that the APR algorithm often 
exactly calculated the correct model order of the simulated 
system, a more important measure of the performance of the 
algorithm is the amount of error associated with the impulse 
responses calculated from the resulting ARMA estimates. TO 
evaluate the performance of the algorithm in this respect, we 
defined the average impulse response error as 

average impulse response error = - 1 "  
111;~ - hll 

2=1 
M 

where M corresponds to the number of data sets considered 
(i.e., M = 100 in this case), h, represents the impulse response 

Average error of hl estimates vs S/N{y) 

! 

! 
! 
Ii 
I 

S/NIYl 

(a) 

Average error of h2 estimates vs S/N{y) 
1.4r I 

\ 
-.- 

I 

OO 2 4 6 8 10 
SWY) 

(b) 

Fig. 5. Comparison of the average impulse response error associated with 
the maximal model { 10,0,9,0,9} (dash-dot line), the minimal model under 
this choice of maximal model occurring after application of the APR algorithm 
(dotted line), the maximal model { 5,0,5,0,5} (dashed line), and the minimal 
model occurring under this last choice of a maximal model (solid line). The 
top plot (a) shows results corresponding to impulse response 111 ; the bottom 
plot (h) shows results corresponding to impulse response ha. 

estimate associated with data set i, and h corresponds to the 
true impulse response of the system. 

Using the above measure of impulse response error, we 
compared the impulse responses associated with the two max- 
imal models selected above ({5,0,5,0,5) and { 10,0,9,0,9}) 
to the minimal models that resulted after application of the 
APR algorithm. Using the data considered in forming Table 
I, Fig. 5 illustrates the error associated with each of the 
above models under the S / N ( y )  ratios considered in that 
table. Glancing at this figure, we first note that the average 
impulse response error was nearly identical for the minimal 
models associated with each initial maximal model choice, 
which supports the fact that the APR algorithm was relatively 
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Fig 6 Impulse response estimates associated with expenmental respration, artenal blood pressure, and heart rate data (a) Impulse response from ILV 
to HR for maximal model (b) Impulse response from ABP to HR for maximal model (c) Imulse response from ILV to HR for mnimal models (d) 
Impulse response from ABP to HR for “mal model 

insensitive to the initial choice of a maximal model in this 
simulation. Further, the average impulse response error of 
the minimal models selected by the APR algorithm was 
significantly lower than each of the maximal models under all 
S / N ( y )  values. Thus, the algorithm was extremely effective 
at reducing the amount of error present in impulse response 
estimates from that of the initially chosen maximal models. 
In fact, a useful interpretation of the APR algorithm is that it 
strives to obtain the model order that minimizes the corruption 
due to noise of the resulting impulse response estimates. 

C. Application to Experimental Data 
To evaluate the effectiveness of the APR algorithm with 

systems that can only be approximated by ARMA models, 
wc uscd it to analyze the rclationship between fluctuations 
in instantaneous lung volume (ILV), arterial blood pressure 
(ABP), and heart rate (HR) data. The relevant data was 
acquired by Saul et al. in an experiment described in [24]. 

In order to quantify the role of the autonomic nervous sys- 
tem in heart rate variability, the following ARMA relationship 
has been proposed in [25] as a possible representation of this 
system’s behavior 

L f l  

a, HR[n - i] + 
,=1 ,=s1 

HR[n] = - b l ,  ILV[n - j ]  

f z  

+ b z k  ABP[n - k ]  + e [ n ] .  (24) 
k=S2 

In order to estimate the impulse responses associated with the 
above model, the APR algorithm was applied to ILV, ABP 
and HR sequences consisting of 1024 data samples at 1.5 Hz. 

The maximal model used to represent the above system 
was chosen through the use of the procedure outlined in the 

Note that, by virtue of setting SI = -5, we have allowed for 
the possibility that respiration affects heart rate in a noncausal 
fashion. A brief explanation of this allowance is that the central 
nervous system controls respiration and may also have a direct 
influence on HR, so that it is conceivable that heart rate could 
be affected by respiration activity before it physically occurs 
[I21 [261. 

Fig. 6 displays the impulse response estimates for a typical 
data set before and after the application of the APR algorithm. 
The top portion of the figure illustrates the responses obtained 
with the model order set as the maximal model. The impulse 
responses associated with the minimal model selected by the 
APR algorithm are shown at the bottom of the figure. The 
grey region surrounding each response indicates the 95% 
confidence bound for the estimate, calculated via the method 
derived in Appendix A. It should be noted that the Matlab 
function ‘interp’ was used to obtain a smooth interpolation 
between the samples of each impulse response estimate. 

There are several points to make regarding the impulse 
response estimates shown in Fig. 6. First, although it is not 
possible to verify that the minimal model selected was the 
true model from the results shown, it should be noted that the 
general shape of the ILV to HR impulse responses correspond 
well to results published in [ 121. In addition, a slightly negative 
delay from ILV to HR has been reported in previous articles 
[12] [26], and can be observed in the shown ILV to HR impulse 
response. As for the performance of the APR algorithm, it 
should be observed that application of it has the effect of 
‘smoothing’ the impulse response estimates and tightening 
their confidence bounds with respect to the maximal model 
estimates. 
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As a final comment on experimental data, it is tempting to 
think that the algorithm can be used to find some ‘universal’ 
parameterization that will fit a large number of investigated 
data sets very well. While that is possible in some cases, we 
have noticed that, in dealing with biological signals, small 
differences often occur in the impulse responses between 
data sets which lead to differences in the associated minimal 
parameterizations (see [ 121, for instance). Most often, the 
conveyer of information is the impulse response [12] (or its 
Fourier transform [ 2 ] ,  [24], [26]), not the parameterization. 
Therefore, the most important characteristic of a good system 
identification procedure in such cases is that it strive to obtain 
the model order which minimizes the corruption due to noise 
of the impulse response estimates. Application of the APR 
algorithm to the experimental data sets we have encountered, 
of which the data presented in this paper is typical, show that 
it does just that - impulse response estimates are ‘smoothed’ 
and their confidence bounds tightened. 

V. CONCLUSION 
This paper has introduced a simple, efficient procedure for 

determining the ‘best’ ARMA model to represent a system 
using its input and output data. Our approach has been to 
use the parameter estimates of an overly specified model to 
construct a set of lower order models that are compared via 
the MDL criterion. The resulting algorithm is fast (the error 
norms associated with the candidate models can be computed 
recursively), requires no user intervention beyond the choice 
of a maximal model, and easily accommodates systems with 
multiple inputs and delays. 

The algorithm was applied to both simulated and experi- 
mental data, and the obtained results were very promising. 
For a simulated system that was represented exactly by an 
ARMA model, the algorithm was shown to have a very high 
success rate in estimating the correct model order. It was also 
shown to reduce the average error of the resulting impulse 
responses from that of the initially chosen maximal model. In 
the case of the experimental data, the result of applying the 
algorithm was to ‘smooth’ the impulse response estimates and 
tighten their confidence bounds with respect to the maximal 
model estimates. Thus, it was asserted that the APR algorithm 
strives toward minimizing the corruption due to noise of the 
ARMA impulse response estimates. 

Finally, a technique was discussed (and derived in Appendix 
A) for the estimation of confidence bounds corresponding 
to the impulse responses calculated from ARMA parameter 
estimates. The method is based on obtaining a linearization of 
the mapping from ARMA estimates to their respective impulse 
responses. Its value lies in the fact that it provides a quick and 
intuitive qualitative assessment of the accuracy of the impulse 
responses calculated from estimated ARMA model parameters. 

APPENDIX A 
A METHOD FOR OBTAINING IMPULSE 

RESPONSE CONFIDENCE LIMITS 
In order to evaluate the effectiveness of an estimation 

procedure, one must know the uncertainty of the estimates. 
This section presents a technique for estimating the error 

associated with the input to output impulse responses obtained 
from ARMA models. 

We begin with the definition of the Z-transform of the 
impulse response associated with the ith input of an ARMA 
model 

Multiplying both sides of the above equation by a(x), and then 
inverse Z-transforming the resulting expression, we obtain 

b,[n] = k[n] *a[%], (27) 

which states that the MA coefficients associated with any given 
input are formed by convolving its impulse response with the 
AR coefficients. This convolution can be written in the form of 
a matrix multiplication if we consider only the first k - si + 1 
terms of the impulse response 

 la[^] 1 
where we have assumed that 5 has been chosen to be greater 
than f z .  As a matter of notation, we will write this matrix 
multiplication as 

b] = Hi[:] 

which implicitly defines the matrix Hi and the vectors bi 
and a. Alternatively, the given convolution relationship can 
be written as 

1 0 0 . . .  0 
a[l] 1 0 

a [LI 

. .  . .  

0 a[L] . . .  

0 . . . a[ l ]  1 
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which effectively defines the matrix A and vector h; upon 
rewriting this equation as [';.I = Ah;. 

Let us now examine the effect of perturbing the MA and AR 
parameters on their associated impulse responses. Defining bi 
and a as ARMA estimates, and H, as the resulting estimate 
impulse response matrix, we relate the perturbation of each of 
these estimates via (29) as follows: 

To explain, the above equation relates the change that occurs 
in an estimated impulse response (AH,) given that the AR 
and MA parameters used to calculate it are changed in value 

Using (29) and the fact that the rightmost portion of (31) 
(a&, ab,). 
and (29) are equal, we rewrite (32) as 

If we concern ourselves only with small perturbations about a 
and b;, then it is reasonable to assume that the term 

AH;[ -aa ] 
is negligible and therefore can be approximated as zero. Also, 
the first column of Ht has no effect on the equation since 
it is multiplied by zero, so that we introduce a new matrix, 
fir, which is defined to be matrix Hi with the first column 
removed. With these facts in mind, we approximate (33) as 

(34) 

A more useful format of the above expression is obtained 
with slight manipulation 

(35) 

where we have defined I, to be the ide6tity matrix with dimen- 
sion equal to the number of MA parameters associated with 
the ith input. Equation 35 effectively provides a linearization 
of the sensitivity of h, to ARMA parameter changes about the 
operating point set by their estimates, a and b,. 

It is straightforward to extend the above results to encom- 
pass all of the input to output impulse responses. Assuming 
M inputs into the system, (35) is expanded as follows: 

where we have defined 

(37) 

The rightmost vector of (36) corresponds directly in form to 
the parameter vector defined in (9). Therefore, it is appropriate 
to rewrite this expression as 

where Ahall is a vector containing the resulting change in 
each of the input to output impulse response vectors due to 
a perturbation of the estimated parameter vector, A8,. The 
matrix D k  represents a linearization of the true mapping that 
occurs between these vectors. 

Now we are in a position to construct confidence boundaries 
for the impulse responses. Glancing back at (16), we note that 
the error associated with the ARMA estimates is expressed as 

Therefore, we can rewrite (38) as 

and determine confidence bounds for the impulse responses by 
simply computing the covariance of Ah,ll. The covariance 
matrix is calculated as 

E(A~,,,AL:~,) = 02~k(+;+k)-1~; (41) 

and the diagonal entries of E [Ah,l~Ah:~~) correspond to the 
variance associated with each ;ample of thi individual impulse 
reponse errors. 

Note that, since (40) represents a linear mapping, the 
random variables hall [ i ] can be approximated as Gaussian. 
(The sum of independent Gaussian random variables is also 
Gaussian.) Therefore, to determine, for instance, error bound- 
aries at 95% confidence for an estimated impulse response 
sample hall[z],  we would calculate 

h,ll[i] = h a l l [ i ]  f 1.96 E(  AhallAhTlz) [ i ,  21). (42) 

As a final comment, it will normally be the case in the 
context of estimation that 02, the variance of the white noise 
sequence e,  is unknown. The following equation provides a 
Straightforward method of estimating this quantity 

l i (  

where N corresponds to the number of data samples in 
the input and output sequences, k,,, equals the number 
of parameters contained within the maximal model selected, 
and I I E , ~ ~ ~ ~ ~ ~  is the squared error norm occurring with the 
maximal model. This last equation is stated in [27] and derived 
in [21]. 
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APPENDIX B 
RECURSIVE COMPUTATION O F  ARMA ESTIMATES 

The proposed model selection procedure in this paper re- 
volves around the estimation equation 

y = a k e k  + & k .  (44) 

To estimate the ARMA parameters, e k ,  in the above formula- 
tion, the least squares operation is performed as follows: 

(45) 

The performance of a model e k ,  for a given k, is evaluated 
based on its MDL value (which is calculated from its resulting 
residual error norm). It is of great interest, therefore, to develop 
a means of efficiently calculating Ek when trying to compare 
various models. If the AR and MA parameters are placed 
within e k  in the order that they will be removed from the 
overspecified model (i.e., the first parameter removed is in the 
last row of 8,  and the last parameter removed is in the first 
row of O k ) ,  then we will show that the residual error norm for 
each candidate model can be calculated recursively! 

Rather than solving for the parameters directly with the least 
squares operation above, we will make use of the ‘reduced’ 
QR decomposition of + k  [27] 

Briefly, Q k  is a matrix consisting of k orthonormal columns, 
i.e., 

Q r Q k  = I (47) 

while RI, is a square, upper triangular matrix with k rows and 
columns. Direct substitution of (46) into (45) leads to 

If we then combine (44), (46), and (48), the following expres- 
sion is obtained 

E k  = Y - QkQ% (49) 

To obtain the recursive relationship desired, we need simply 
exploit the following fact 

where qi denotes the ith column of Q k .  The above expression 
leads to a slight manipulation of (49) 

k 

i= I  

from which follows the recursive relation 
k - 1  

E k - 1  = y - qiq’y = E k  f qkqzy .  (52) 
i=l 
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