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ABSTRACT

Techniques for fast and accurate simulation of fractional-
N synthesizers at a detailed behavioral level are presented.
The techniques allow a uniform time step to be used for the
simulator, and can be applied to a variety of phase locked
loop (PLL) and delay locked loop (DLL) circuits beyond
fractional-N synthesizers, as well as to a variety of simulation
frameworks such as Verilog and Matlab. Simulated results
from a custom C++ simulator are shown to compare well to
measured results from a prototype fractional-N synthesizer
using a X-A modulator to dither its divide value.
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General Terms
Algorithms
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1. INTRODUCTION

Fractional-N frequency synthesizers provide high speed
frequency sources that can be accurately set with very high
resolution, which is of high value to many communication
systems. Figure 1 illustrates a fractional-N synthesizer, which
consists of a phase-frequency detector (PFD), charge pump,
loop filter, voltage controlled oscillator (VCO), and a fre-
quency divider that is dithered between integer values to
achieve fractional divide ratios. This paper will focus on a
class of fractional-N synthesizers known as X-A frequency
synthesizers [12], for which the divide value is dithered ac-
cording to the output of a ¥-A modulator [8].

Dithering of the divide value by the X-A modulator al-
lows high frequency resolution to be achieved [12], but also
has the negative side effect of introducing quantization noise
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that degrades the overall PLL noise performance. It is
highly desirable to be able to simulate the effects of this
quantization noise, along with other noise sources in the
PLL shown in Figure 2, on the overall PLL performance.
It is also desirable to simulate the dynamic response of the
synthesizer in response to variations of the ¥£-A input in or-
der to evaluate stability and characterize the performance
of the system when it is used as a transmitter [10].
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Figure 1: ¥-A synthesizer and associated signals.
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Figure 2: Spectral densities of PLL noise sources.

Simulation of fractional-N synthesizers is particularly chal-
lenging for a variety of reasons. First, the Ligh output fre-
quency of the synthesizer (often in the GHz range) imposes a
high simulation sample frequency for traditional simulators.
Unfortunately, the overall PLL dynamics have a bandwidth
that is typically three to four orders of magnitude lower
in frequency than the output frequency (often 100 kHz to
1 MHz bandwidth compared to a GHz output frequency).
Thus, traditional simulators take a long time to compute
the dynamic response of the system since many simulation
samples are required. This is the classical problem that is
encountered with the simulation of PLL circuits. For noise



simulation, the fractional-N synthesizer adds the additional
constraint that its behavior is non-periodic. in steady-state
due to the dithering action of the divide value, which pre-
vents the use of methods developed for periodic steady-state
conditions {7] as used with simulators such as SpectreRF.

In contrast to the above approaches, two techniques are
presented in this paper that allow fast and accurate simula-
tion of both dynamic and noise performance of fractional-N
synthesizers at a detailed behavioral level. The first pro-
vides accurate representation of the continuous-time (CT)
PED output with a discrete-time (DT) sequence using an
area conservation principle. The second allows a dramatic
reduction of the simulation sample frequency, and therefore
a longer sample period, by including the divider implemen-
tation in the VCO simulation module. Both of these meth-
ods allow a uniform time sample period to be used, and also
allow non-iterative computation of the sample values of the
various signals within the system. The uniform time sample
period allows the results of the simulator to be readily exam-
ined in the frequency domain without resampling, and the
non-iterative computation allows the technique to be eas-
ily used in mainstream simulators such as Verilog, VHDL,
Matlab, and custom C/C++ programs.

An outline of the paper is as follows. Section 2 provides an
overview of the discretization technique for representation of
the CT PFD output with a DT sequence, and presents the
corresponding mathematical analysis. Section 3 describes,
at a high level, how the discretization technique can be im-
plemented with the PFD described in terms of basic building
blocks such as registers and logic gates. Section 4 focuses on
the method of dramatically reducing the required simulation
sample rate by combining the VCO and divider functions
into one simulation block. Section 5 compares simulated re-
sults from a custom C++ simulator to measured results of
an actual circuit implementation described in [10]. Finally,
Section 6 concludes.

2. PFD DISCRETIZATION TECHNIQUE

For simulation based on uniform time sampling, a straight-
forward approach of converting the CT PFD output to a DT
sequence is to apply the sampling operation shown in Fig-
ure 3 [6]. Unfortunately, this approach effectively quantizes
the location of the PFD edges according to the simulation
sample period, Ts. A reasonable assessment of the dynamic
performance of the PLL can be achieved if T; is made suf-
ficiently small. However, the resulting quantization noise
overpowers the true noise characteristics of the signals, and
prevents proper noise analysis of the overall PLL.

Sample Period = Ts

Figure 3: Classical uniform time sample method.

To solve the quantization noise issue, event-driven simu-
lation methods have been developed for classical frequency
synthesizers that align simulation samples precisely to the
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edges of the PFD output [2, 5, 1]. Although higher accuracy
can be achieved with such methods, they are generally more
complicated than uniform time sampling methods. Either
closed-form calculation of the loop filter step response must
be developed and then inserted into the simulation, or it-
erative methods, as used in SPICE or Verilog-A, must be
incorporated into the simulator to calculate the loop filter
response with varying time steps. The former approach is
tedious and typically restricted to a low loop filter order, so
that most of the recent methods focus on the latter approach
[2, 5, 1]. In this case, the up-front work of the designer is
minimized, but the simulation time is often longer due to
the iterative calculations that are performed at each time
step. Unfortunately, for either case, event-driven simulators
have not yet been applied successfully to the noise analysis
of fractional-N frequency synthesizers in which the divide
value is dynamically varied.

In contrast to the above approaches, a constant time step
method is proposed in this paper that applies an area con-
servation principle when converting the CT PFD output to
the DT domain. This approach allows non-iterative com-
putation of the loop filter dynamics by allowing them to be
converted from CT to DT using either impulse invariance
or bilinear transform methods [9]. Figure 4 illustrates an
example of the resulting DT PFD signal, along with the
corresponding DT loop filter impulse response. The charge
pump is ignored in this analysis for simplicity; its effect can
be included by simply scaling the PFD output by the value
of the charge pump current. In the example, we see that the
DT PFD output takes on values at its transitions that vary
between 0 and 1 depending on the location of the transition
edge. The DT version of the loop filter simply consists of a
DT filter whose impulse response corresponds to samples of
the CT impulse response of the loop filter, h(t).
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Figure 4: Proposed discretization method.

The discretization procedure is now discussed in more de-
tail. As illustrated by Figure 5, we can view the CT PFD
output, e(t), as a series of rectangular pulses with height of
one or zero and a width and time offset that varies accord-
ing to the location of PFD edges. For rectangular pulses not
associated with edges, the width corresponds to the sample
period of the simulation, Ts. For rectangular pulses at edge
boundaries, the width of the pulse varies between 0 and T
as shown in the figure. In either case, these pulses look
like impulses to the loop filter so that, from an intuitive
standpoint, their influence can be characterized by two pa-
rameters — their area and time offset. Therefore, in line
with this intuition, the corresponding DT PFD signal, e[n],
is chosen as samples that have amplitude proportional to the
area of the respective rectangular pulse in that time sample



interval. The area of each pulse corresponds to its associ-
ated timing parameter € shown in the figure — the method
of calculating € for each pulse will be discussed in Section
4. It will be shown that the proposed discretization proce-
dure yields highly accurate results, fast computation, and a
simple implementation framework.
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Figure 5: Details of PFD discretization technique.

To mathematically justify the technique, let us begin by
specifying a notation for the rectangular pulses composing
e(t) that are shown in Figure 5, namely

rect(t,ex) =1 for —ex/2 <t<e€x/2, 0 elsewhere.
We can describe the loop filter output as
v(t) = > rect(t — kT, — Aty, ex) * h(t), )
k=—o0

where * denotes convolution, and At shifts its associated
pulse in time according to the value of ¢x and whether the
transition edge is rising or falling. Note that e, and Aty are
constrained to 0 < €x < T and —Ts < Aty < 0.

Taking the Fourier Transform of both sides of Equation 1,
we obtain

V(]w) — Z €~jw(kT5+Atk) QSin((Zﬂ/Q)w) H(]w), (2)

k=—o00

where H(jw) is the loop filter frequency response.

One might be bothered that the Fourier Transform is
being taken with sequences that are stochastic in nature,
namely €x and Atg. This step is justified by noting that
these sequences will be defined and finite in duration for a
specific simulation run. However, we cannot infer statistical
properties from Equation 2 or the analysis that follows.

Equation 2 can be simplified in light of the following as-
sumptions:

e H(jw) is a lowpass filter such that |H(jw)| = 0 for
[w| > wo,

e The sample frequency, 1/T5s, is much higher than the
bandwidth of |H (jw)|, so that w,Ts < 1. Since |ex| <
Ts, we have sin((ex/2)wo) = (€x/2)wo.

The second assumption is well justified in practice since it
is typical for wo,Ts <« 1/100. For instance, the author rec-
ommends sampling at a rate that is greater than a factor
of 10 above the reference frequency, which is, in turn, at
least a factor of 10 higher in frequency than the loop filter
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bandwidth in Hz, fo, to achieve stable PLL dynamics [11].
In this case, foTs < 1/100, so that w,Ts < 1/(27100).

Based on the above assumptions, Equation 2 is approxi-
mated as

V(jw) = Z eke_jw(kT”m")H(jw).

k=—o0

The inverse Fourier Transform of the above expression is

oo

> exh(t — kTs — Aty).

k=—oc0

v(t) (3)

We are now ready to develop the DT model of the PFD /loop
filter that we are seeking. We begin by sampling Equation 3:

e

o(nTs) = Y exh{(n— k)Ts — Aty).

k=—o0

(4)

The above formulation requires nonuniform sampling of h(t)
due to the inclusion of At — it is preferabls to remove this
parameter if it can be shown that its influence is negligible.
We will examine this issue using a specific form for h(%),
and then comment on the extension of the analysis for more
general forms of h(t).

Let us assume that the loop filter corresponds to a lead/lag
network with transfer function of the form:

Jw + w,

HGw) = K 5 Gw vy

Using the method of partial fractions [9], it is straightfor-
ward to show that the corresponding loop filter impulse re-
sponse is of the form

h(t) = Kie “*u(t) + Kou(t) = (Kie ¥t + Ka)u(t),

where u(t) is the unit step (0 for ¢ < 0, 1 for ¢ > 0), and
Ki and K> are constant scale factors. Plugging the above
expression into Equation 4, we obtain

o(nTy) = Z ek(Kle«walz("—k)Ts—Atk)+K2)u((n_k)Ts__Atk)‘
k=—0o0
(5)
‘We note that:

u((n — k)Ts — Atg)

u((n — k)Ts)
since — T, <X Aty <0,

and

e—wo((n—k)Ts—Atk) 6woAtke—wo(n—-kz)Ts

(1 4+ wo Aty )e We(n=F)Ts

Therefore, the effect of the time shift operation by Atg
has no influence on samples of u(t), and only slightly mod-
ulates the amplitude of samples of the exponential response
e~ ™ot Although its effect could be incorporated into the
numerical model, the author has found that it can be safely
ignored given that two conditions are met. The first condi-
tion is that w,Ts be much less than 1 so that 1+ w,Atx = 1.
This condition is satisfied in practice; it was argued earlier in
this section that we can typically expect that woTs < 1/100.
The second condition is that the sample rate of the simula-
tor, 1/Ts, be chosen as an integer multiple of the nominal
frequency of the pulses associated with the CT PFD out-
put. The effect of violating either of these conditions is the
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introduction of false spurs in the output phase noise of the
synthesizer, as will be demonstrated in Section 5.
Given that the above conditions are satisfied, we can sim-
plify Equation 5 as
oo
v(nTs) = Y en(K1e "7 4 Kou((n — k)TS),
k=—o0
so that we have
o0

> T

k=—o00

v(nTs) = ((n = K)T5). (6)

Equation 6 is the conclusion of our effort, and matches the
picture representation of the method illustrated in Figure 4
when e[n] = €, /Ts.

Although the above analysis was performed for a simple
lead/lag loop filter, higher order filters can be analyzed in
similar fashion using the partial fraction expansion method.
Specifically, high order filters have impulse responses that
consist of a sum of exponentials, with each exponential cor-
responding to a distinct pole in the loop filter. The impact
of ex and Aty on each of these exponentials can be assessed
in the same manner as derived above.

3. IMPLEMENTATION OF PFD

Now that it has been established that the PFD output
signal can be accurately represented as a DT sequence using
a principle of area conservation, let us examine the practical
issue of representing the PFD topology in simulation code.
As revealed by Figure 6, computation of e[n] for a given
PFD topology requires that transition information be passed
along and processed by primitive elements such as registers
and logic gates. Basic operations such as complementing

signals must also be supported.
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Figure 6: XOR-based PFD.

As illustrated in Figure 7, the complement operation is
easily achieved as a sign change by slightly modifying the
representation of e[k] such that it alternates between -1 and
1 as opposed to 0 and 1. The new representation is achieved
through the transformation e[n] = 2e[n] — 1.

The transfer of transition information through primitives
is illustrated in Figure 8 for a register and a representative
logic gate, namely the ‘and’ gate. In the case of the register,
the relevant timing information is contained in the clock sig-
nal. Specifically, whenever there is a transition at the output
of the register, the location of that transition in time is set
by the location of the rising (or falling) edge of the clock.
As shown in the figure, this information is transfered to the
register output by simply passing on the clk transition value
when the output transitions in the same direction, and pass-
ing on the complement of the clk transition value when the
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Figure 7: A better signal representation.

output transitions in the opposite direction. In the case of
the ‘and’ gate, either input can cause the output to tran-
sition. As gleaned from the figure, it is straightforward to
determine which input is causing the transition, and appro-
priately pass its edge location value to the output of the
‘and’ gate. Similar arguments can be made for more com-
plicated registers that include set and reset functions, and
other primitives such as ‘or’ and ‘xor’ gates.
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Figure 8: Example of register and logic gate signals.

4. VCO AND DIVIDER

Simulation of the VCO and divider portions of the PLL
is now discussed, and a technique illustrated whereby the
simulation sample period, T, can be set according to the
reference frequency rather than the much higher VCO fre-
quency. This technique typically allows more than two or-
ders of magnitude speedup in simulation time of the PLL
since the VCO frequency is typically more than two orders
of magnitude higher than the reference frequency. Unlike
a previous method that provided speedup for a PLL with
no divider and a memoryless phase detector by modeling
the VCO entirely in the phase domain [13], the presented
technique accommodates fractional-N synthesizers that have
dividers with dynamically varying value and digital PFD
topologies as described in the previous sections. The key
idea behind the technique is to combine the VCO and di-
vider into one computation block.

To begin, let us define the phase of the VCO, ®ye(t),
as the integral of its output frequency. Since the output
frequency of the VCO is varied about its nominal frequency
by its input voltage, we have:

Beo(t) = [ ; 2 ™

where v(t) is the VCO input voltage, K, is the VCO gain
(Hz/V), fc corresponds to the nominal VCO frequency when
v(t) = 0, and P, (¢t) is VCO noise as illustrated in Fig-
ure 2. To model a nonlinear relationship from input voltage

(Kou(T) + fe)dr + ®un (1),



to VCO frequency, the VCO input would be multiplied by a
polynomial gain expression rather than just K,. In general,
@0 (t) looks like a ramp in time, and rising edges of the
VCO output occur each time it increments by 27 radians.

Simulation of the VCO is performed by simply discretizing
Equation 7 as

Byeo (nTs) = i 2T (Kyv(kTs) + fo) + Pon(nTs). (8)

k=—00

To prevent loss of information in the CT to DT conversion,
1/Ts must be higher than twice the highest frequency con-
tent of v(t) and ®,.(t), as stated by the Nyquist theorem
[9]. From a practical perspective, this condition will often be
satisfied by meeting the sampling requirements for the PFD
output. Choosing a sample rate such that w,Ts < 1/100 is
obviously sufficient for v(t) since it is the output of the loop
filter with bandwidth w, rad/s. ®..(t) is also bandlimited
since it rolls off at -20 dB/decade, or more, before eventually
hitting a low valued noise floor [3].

Rising edges of the divider output occur every N[m] ris-
ing edges of the VCO output, where N[m] corresponds to
the instantaneous divide value. Therefore, as illustrated on
the left side of Figure 9, the VCO phase, ®,.,(t), completely
specifies the location of the divider edges. As such, we can
determine the value of ¢, at the transition points of the
divider output based entirely on computed VCO phase, as
shown on the right side of Figure 9 for first-order interpo-
lation [2]. Note that the expressions assume that phase is
wrapped every 2mw N[m] radians. It suffices to choose a sam-
ple rate for the VCO phase computation according to the di-
vider frequency, which equals the reference frequency, rather
than the much higher VCO frequency.

Relationship of Divider Edges to VCO Phase Calculation of g,
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Figure 9: VCO and divider signals.

5. RESULTS

The results of simulating the dynamic behavior and noise
performance of a prototype synthesizer described in [10] us-
ing a custom C++ simulator employing the presented tech-
niques are now presented, and simulated noise compared to
measured results. Figure 1 provides a block diagram of the
prototype system; the reader is referred to [10] for more de-
tails. Both dynamic and noise simulations will include the
noise sources depicted in Figure 2, with VCO noise being
input referred as a white noise source as described in [10].
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Parameters associated with the noise sources are shown in
Figure 10, which were computed from Hspice simulations
and VCO measurements.
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KL Filter t
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Figure 10: Model of charge pump and VCO noise.
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Relevant characteristics of the prototype include a refer-
ence frequency of 20 MHz, a VCO with f. = 1.84 GHz and
K, = 30 MHz/V, a second order ¥-A modulator, a charge
pump that outputs £1.5 pamps, a nominal divide value of
92.3, a PFD topology as shown in Figure 6 [4], and a lead/lag
filter with transfer function

1+ jw/(2n f2)
Csjw(l + jw/ (27 fp))’

H(jw) =

where
f- =11.6 kHz, f, =127.2 kHz,

Figure 11 shows the measured synthesizer phase noise of the
prototype taken from [10], along with the measured open
loop VCO noise from which the input referred VCO noise
variance in Figure 10 was computed.

C3 = 30e-12.
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Figure 11: Measured synthesizer noise.

The simulation sample frequency was chosen as 1/7Ts =
400 MHz, which is a factor of 20 higher than the reference
frequency. The CT loop filter was converted to DT using
the bilinear transform [9]. All simulations were run on a 650
MHz Pentium IIT laptop computer.

Beginning with dynamic behavior, Figure 12 shows the
simulated VCO output frequency (constructed from the sim-
ulated VCO input) in response to variations at the input of
the ¥-A modulator that include step and ramp functions.
The step size is chosen to be large enough to knock the
synthesizer out of frequency lock — the corresponding os-
cillations in the VCO output frequency are a result of cycle
slipping before the VCO becomes frequency locked again.
The subsequent ramp in divide value illustrates the high
resolution of the synthesizer as its output frequency is var-
ied over a 40 MHz range. For this simulation, 260 thousand
time steps were computed in less than 5 seconds.



o7
96/
961
718
g3k
-3

o
T 1940

= 1920

Nsg

T R

200 300

>
g 1900
3 1880

1 L

O 1860

w

8 1840 B
s 18200

Figure 12: Simulated synthesizer dynamics.
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Noise simulations of the prototype (constructed from the
simulated VCO input) are shown in Figure 13 with the in-
put to the £-A modulator being held constant. The top plot
shows the simulated output noise spectral density with the
simulation sample frequency, 1/T5s, set to an integer multi-
ple of the reference frequency, as recommended to reduce the
effects of Atj, in Equation 4. The bottom plot shows the im-
pact of choosing 1/T to be a non-integer multiple of the ref-
erence frequency. We see that, in both cases, the simulated
phase noise agrees quite well with measured results. The
larger discrepancy at frequencies close to 100 kHz is prob-
ably due to non-ideal characteristics of the charge pump,
such as duty cycle offset and transient dynamics, not being
modeled. Such effects could be included within the given
framework, but it is useful to observe that, despite ignoring
such effects, the simulation results are still quite accurate for
this prototype. As observed in the bottom plot, the impact
of choosing 1/7T, to be a non-integer multiple of the refer-
ence frequency is that the reference spur at 20 MHz offset is
aliased to other frequency values. This aliasing occurs due
to the presence of harmonics above 402 MHz of the 20 MHz
reference spur in the CT PFD output. For each simulation,
5 million time steps were computed in 80 seconds.

6. CONCLUSION

Two techniques were presented in this paper that allow
fast and accurate simulation of fractional-N synthesizers at
a detailed behavioral level using a uniform time sample pe-
riod. The first provides accurate representation of the CT
PFD output with a DT sequence using an area conservation
principle. The second allows a dramatic reduction of the
simulation sample frequency by including the divider imple-
mentation in the VCO simulation module. The techniques
were incorporated into a custom C++ simulator, which was
used to simulate the dynamic and noise performance of a
prototype ¥-A frequency synthesizer. The simulated noise
performance was shown to agree quite well with measured
results. The techniques can also be applied to other phase
locked loop circuits, and be implemented in other simulation
frameworks such as Verilog and Matlab.

7. REFERENCES

(1] B. De Smedt and G. Gielen. Nonlinear Behavioral
Modeling and Phase Noise Evaluation in Phase
Locked Loops. In CICC, pages 53-56, 1998.

[2] A. Demir, E. Liu, A. L. Sangiovanni-Vincentelli, and
1. Vassiliou. Behavioral Simulation Techniques for

503

9]

[10]

[11]

[12]

[13]

1/T¢ = 20*(reference frequency)

-60 T
70t . . . 4
— Simulated Noise
-80 © o Measured Noise 7
(From Figure 11)
— -90F E
z
S -100 - 4
@
2 110+ 1
<
~ 120+ P
130} 4
-140} 1
-150
25 kHz 100 kHz 1 MHz 10 MHz 25 MHz
60 1/Ts = 20.1*(reference frequency)

70L . B 1
- | — Simutated Noise
-80

‘| ¢ Measured Noise "
(From Figure 11)
-90 - g
-100

110}
-120}
-130)
1401

L(f) (dBc/Hz)

-150 -
25 kHz 100 kHz 1 10 MHz 25 MHz
Frequency Offset from Carrier

Figure 13: Simulated synthesizer phase noise.

Phase/Delay-Locked Systems. In Custom Integrated
Circuits Conference (CICC), pages 453-456, 1994.

A. Hajimiri and T. Lee. A General Theory of Phase
Noise in Electrical Oscillators. IEEE Journal of Solid
State Circuits (JSSC), 33(2):179-194, Feb. 1998.

A. Hill and A. Surber. The PLL Dead Zone and How
to Avoid It. In RF Design, pages 131-134, Mar. 1992.
M. Hinz, I. Konenkamp, and E.-H. Horneber.
Behavioral Modeling and Simulation of Phase-locked
Loops for RF Front Ends. In 43rd Midwest Symp. on
Circuits and Systems, pages 194-197, 2000.

D. Johns and K. Martin. Analog Integrated Circuit
Design. Wiley, 1997.

K. Kundert, J. White, and A. Sangiovanni-Vincentelli.
Steady-State Methods for Simulating Analog and
Microwave Circuits. Kluwer, Boston, 1990.

S. Norsworthy, R. Schreier, and G. Temes.
Delta-Sigma Data Converters: Theory, Design, and
Simulation. IEEE Press, New York, 1997.

A. V. Oppenheim and R. W. Schafer. Discrete Time
Signal Processing. Prentice Hall, N.J., 1999.

M. Perrott, T. Tewksbury, and C. Sodini. A 27 mW
CMOS Fractional-N Synthesizer using Digital
Compensation for 2.5 Mb/s GFSK Modulation. JSSC,
32(12):2048-2060, Dec. 1997.

B. Razavi. Monolithic Phase-Locked Loops and Clock
Recovery Circuits: Theory and Design. IEEE Press,
New York, 1996.

T. A. Riley, M. A. Copeland, and T. A. Kwasniewski.
Delta-Sigma Modulation in Fractional-N Frequency
Synthesis. JSSC, 28(5):553-559, May 1993.

P. Van Halen and G. Boyle. SPICE-Compatible
Behavioral Phase-Space Simulation Techniques for
Phase-Locked Systems. In 38th Symposium on Circuits
and Systems Conference, volume 1, pages 53-56, 1996.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


