Tutorial on Digital Phase-Locked Loops CICC 2009

Michael H. Perrott September 2009

Why Are Digital Phase-Locked Loops Interesting?

- Performance is important
 - Phase noise can limit wireless transceiver performance
 - Jitter can be a problem for digital processors
- The standard analog PLL implementation is problematic in many applications
 - Analog building blocks on a mostly digital chip pose design and verification challenges
 - The cost of implementation is becoming too high ...

Can digital phase-locked loops offer excellent performance with a lower cost of implementation?

Just Enough PLL Background ...

What is a Phase-Locked Loop (PLL)?

- VCO efficiently provides oscillating waveform with variable frequency
- PLL synchronizes VCO frequency to input reference frequency through feedback
 - Key block is phase detector
 - Realized as digital gates that create pulsed signals

Integer-N Frequency Synthesizers

- Use digital counter structure to divide VCO frequency
 - Constraint: must divide by integer values
- Use PLL to synchronize reference and divider output

Output frequency is digitally controlled

Fractional-N Frequency Synthesizers

- Dither divide value to achieve fractional divide values
 - PLL loop filter smooths the resulting variations

Very high frequency resolution is achieved

The Issue of Quantization Noise

Analog Phase Detection

- Pulse width is formed according to phase difference between two signals
- Average of pulsed waveform is applied to VCO input

Tradeoffs of Analog Approach

 Benefit: average of pulsed output is a continuous, linear function of phase error

10

Issue: analog loop filter implementation is undesirable

Issues with Analog Loop Filter

- Charge pump: output resistance, mismatch
- Filter caps: leakage current, large area

Going Digital ...

- Digital loop filter: compact area, insensitive to leakage
- Challenges:
 - Time-to-Digital Converter (TDC)
 - Digitally-Controlled Oscillator (DCO)

Outline of Talk

- Overview of Key Blocks (TDC and DCO)
- Modeling & CAD Tools
- High Performance TDC design
- Quantization Noise Cancellation
- DCO based on an efficient passive DAC structure
- Divider Design
- Loop Filter Design
- Prototype with measured Results

Classical Time-to-Digital Converter

- Resolution set by a "Single Delay Chain" structure
 - Phase error is measured with delays and registers
- Corresponds to a flash architecture

Impact of Limited Resolution and Delay Mismatch

- Limit cycles due to limited resolution (unless high ref noise)
- Fractional-N PLL
 - Fractional spurs due to non-linearity from delay mismatch

15

Modeling of TDC

- Phase error converted to time error by scale factor: $T/2\pi$
- **TDC** introduces quantization error: $t_{\alpha}[k]$
- TDC gain set by average delay per step: \(\Delta t_{del} \)

A Straightforward Approach for Achieving a DCO

- Use a DAC to control a conventional LC oscillator
 - Allows the use of an existing VCO within a digital PLL
 - Can be applied across a broad range of IC processes

17

A Much More Digital Implementation

- Adjust frequency in an LC oscillator by switching in a variable number of small capacitors
 - Most effective for CMOS processes of 0.13u and below

Leveraging Segmentation in Switched Capacitor DCO

- Similar in design as segmented capacitor DAC structures
 - Binary array: efficient control, but may lack monotonicity
 - Unit element array: monotonic, but complex control
- Coarse and fine control segmentation of DCO
 - Coarse control: active only during initial frequency tuning (leverage binary array)
 - Fine control: controlled by PLL feedback (leverage unit element array to guarantee monotonicity)

Leveraging Dithering for Fine Control of DCO

- Increase resolution by Σ - Δ dithering of fine cap array
- Reduce noise from dithering by
 - Using small unit caps in the fine cap array
 - Increasing the dithering frequency (defined as $1/T_c$)
 - We will assume $1/T_c = M/T$ (i.e. M times reference frequency)

20

Calculation of Noise Spectrum: Switched Cap DCO

- Phase noise
 - Same as for conventional VCO (tank Q, etc.)
- Quantization noise from dithering
 - See Section 3 of Supplemental Slides

21

Overall Digital PLL Model

- TDC and DCO-referred noise influence overall phase noise according to associated transfer functions to output
- Calculations involve both discrete and continuous time

M.H. Perrott

23

Key Transfer Functions

TDC-referred noise

$$\frac{\Phi_{out}}{t_q} = \frac{(1/\Delta t_{del})H(e^{j2\pi fT})T2\pi K_v/(2\pi jf)}{1 + (1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi jf)(1/N)}$$

DCO-referred noise

$$rac{\Phi_{out}}{\Phi_n} = rac{1}{1 + (1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi jf)(1/N)}$$

Introduce a Parameterizing Function

Define open loop transfer function A(f) **as:**

$$A(f) = (1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi jf)(1/N)$$

Define closed loop parameterizing function G(f) **as:**

$$G(f) = \frac{A(f)}{1 + A(f)}$$

Note: G(f) is a lowpass filter with DC gain = 1

Transfer Function Parameterization Calculations

TDC-referred noise

$$egin{aligned} rac{\Phi_{out}}{t_q} &= rac{(1/\Delta t_{del}) H(e^{j2\pi fT}) T 2\pi K_v/(2\pi jf)}{1 + (1/\Delta t_{del}) H(e^{j2\pi fT}) T K_v/(2\pi jf)(1/N)} \\ &= rac{2\pi N A(f)}{1 + A(f)} = \boxed{2\pi N G(f)} \end{aligned}$$

DCO-referred noise

$$\frac{\Phi_{out}}{\Phi_n} = \frac{1}{1 + (1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi jf)(1/N)}$$
$$= \frac{1}{1 + A(f)} = \frac{1 + A(f) - A(f)}{1 + A(f)} = \boxed{1 - G(f)}$$

Key Observations

TDC-referred noise

$$\frac{\Phi_{out}}{t_q} = 2\pi N G(f)$$
 Lowpass with a DC gain of $2\pi N$

DCO-referred noise

$$\frac{\Phi_{out}}{\Phi_n} = 1 - G(f)$$
 Highpass with a high frequency gain of 1

How do we calculate the output phase noise?

Spectral Density Calculations

$$CT \longrightarrow CT \qquad \xrightarrow{x(t)} \qquad H(f) \qquad \xrightarrow{y(t)} \qquad DT \longrightarrow DT \qquad \xrightarrow{x[k]} \qquad H(e^{j2\pi fT}) \qquad \xrightarrow{y(t)} \qquad DT \longrightarrow CT \qquad \xrightarrow{x[k]} \qquad H(f) \qquad \xrightarrow{y(t)} \qquad DT \longrightarrow CT \qquad \xrightarrow{x[k]} \qquad H(f) \qquad \xrightarrow{y(t)} \qquad DT \longrightarrow CT \qquad \xrightarrow{x[k]} \qquad DT \longrightarrow CT \qquad DT \longrightarrow CT$$

• CT
$$\rightarrow$$
 CT $S_y(f) = |H(f)|^2 S_x(f)$

■ DT → DT
$$S_y(e^{j2\pi fT}) = |H(e^{j2\pi fT})|^2 S_x(e^{j2\pi fT})$$

Phase Noise Calculation

TDC noise

- DT to CT calculation
- Dominates PLL phase noise at low frequency offsets

DCO noise

- CT to CT calculation
- Dominates PLL phase noise at high frequency offsets

Example Calculation for Delay Chain TDC

Ref freq = 1/T = 50 MHz, Out freq = 3.6 GHz

$$\Rightarrow N = \frac{3600}{50} = 72$$

■ Inverter delay = Δt_{del} = 20 ps

$$S_{\Phi_{out}}(f)\Big|_{\text{tdc}} = \frac{1}{T} |2\pi NG(f)|^2 \frac{\Delta t_{del}^2}{12}$$

$$= 3.4 \cdot 10^{-10} |G(f)|^2$$

$$S_{\Phi_{out}}(f)\Big|_{\text{tdc}} = \frac{1}{T} |2\pi NG(f)|^2 \frac{\Delta t_{del}^2}{12}$$

Note: G(f) = 1 at low offset frequencies

 $10\log(3.4\cdot10^{-10}) = -94.7 \ dBc/Hz$ (at low offset freq.)

Closed Loop PLL Design Approach

Proposed Closed Loop Design Approach

Lau and Perrott, DAC, June 2003

- Classical open loop approach
 - Indirectly design G(f) using bode plots of A(f)
- Proposed closed loop approach
 - Directly design G(f) by examining impact of its specifications on phase noise (and settling time)
 - Solve for A(f) that will achieve desired G(f)

Implemented in *PLL Design Assistant* Software http://www.cppsim.com

Evaluate Phase Noise with 500 kHz PLL Bandwidth

Key PLL parameters:

G(f): 500 kHz BW, Type II, 2nd order rolloff

TDC noise: -94.7 dBc/Hz

DCO noise: -153 dBc/Hz at 20 MHz offset (3.6 GHz carrier)

Calculated Phase Noise Spectrum with 500 kHz BW

TDC noise too high for GSM mask with 500 kHz PLL bandwidth

M.H. Perroll

Change PLL Bandwidth to 100 kHz

Key PLL parameters:

G(f): 100 kHz BW, *Type* = 2, 2nd order rolloff

TDC noise: -94.7 dBc/Hz

DCO noise: -153 dBc/Hz at 20 MHz offset (3.6 GHz carrier)

Calculated Phase Noise Spectrum with 100 kHz BW

GSM mask is met with 100 kHz PLL bandwidth

Loop Filter Design using PLL Design Assistant

- PLL Design Assistant allows fast loop filter design
 - See Section 4 of Supplemental Slides
 - Assumption: *Type* = 2, 2nd order rolloff

$$H(z) = K_{LF} \left(rac{1}{1-z^{-1}}
ight) rac{1-b_1 z^{-1}}{1-a_1 z^{-1}}$$
 - Where: $a_1 = rac{1}{1+w_p T}$ $b_1 = rac{1}{1+w_z T}$ $K_{LF} = \left(rac{\Delta t_{del}}{T/N}
ight) rac{K}{K_v} \left(rac{w_p}{w_z}
ight) rac{a_1}{b_1} T$

PLL Design Assistant provides the values of K, $w_p = 2\pi f_p$, $w_z = 2\pi f_z$

Example Digital Loop Filter Calculation

Assumptions

- Ref freq (1/T) = 50 MHz, Out freq = 3.6 GHz (so N = 72)
- $\Delta t_{del} = 20 \text{ ps}, K_v = 12 \text{ kHz/unit cap}$
- 100 kHz bandwidth, *Type* = 2 , 2nd order rolloff

$$H(z) = K_{LF} \left(\frac{1}{1 - z^{-1}} \right) \frac{1 - b_1 z^{-1}}{1 - a_1 z^{-1}}$$

$$b_1 = \frac{1}{1 + 2\pi 10 \text{kHz/50MHz}} = 0.9987$$

$$a_1 = \frac{1}{1 + 2\pi 153 \text{kHz/50MHz}} = 0.9811$$

$$K_{LF} = \left(\frac{\Delta t_{del}}{T/N} \right) \frac{3 \cdot 10^{10}}{12 \text{kHz}} \frac{153}{10} \frac{.9811}{.9987} \frac{1}{50 \text{MHz}}$$

$$= \left(\frac{\Delta t_{del}}{T/N} \right) 0.75 = \left(\frac{\Delta t_{del}}{T_{dco}} \right) 0.75$$

Verify Calculations Using C++ Behavioral Modeling

- Behavioral environment allows efficient architectural investigation and validation of calculations
 - Fast simulation speed is essential for design investigation

39

CppSim – A Fast C++ Behavioral Simulator

http://www.cppsim.com

How Do We Improve TDC Performance?

Two Key Issues:TDC resolutionMismatch

Motivation

Improve Resolution with Vernier Delay Technique

Issues with Vernier Approach

- Mismatch issues are more severe than the single delay chain TDC
 - Reduced delay is formed as difference of two delays
- Large measurement range requires large area
 - Initial PLL frequency acquisition may require a large range

Two-Step TDC Architecture Allows Area Reduction

Two-Step TDC Using Time Amplification

Leveraging Metastability to Create a Time Amplifier

Simplified view of: Abas, et al., Electronic Letters, Nov 2002 (note that actual implementation uses SR latch)

- Metastability leads to progressively slower output transitions as setup time on latch is encroached upon
 - Time difference at input is amplified at output

Interpolating time-to-digital converter

- Interpolate between edges to achieve fine resolution
- Cyclic approach can also be used for large range

An Oscillator-Based TDC

- Output e[k] corresponds to the number of oscillator edges that occur during the measurement time window
- Advantages
 - Extremely large range can be achieved with compact area
 - Quantization noise is scrambled across measurements

A Closer Look at Quantization Noise Scrambling

- Quantization error occurs at beginning and end of each measurement interval
- As a rough approximation, assume error is uncorrelated between measurements
 - Averaging of measurements improves effective resolution

50

Deterministic quantizer error vs. scrambled error

- Deterministic TDC do not provide inherent scrambling
- For oversampling benefit, TDC error must be scrambled!
- Some systems provide input scrambling (ΔΣ fractional-N PLL), while some others do not (integer-N PLL)

Proposed GRO TDC Structure

A Gated Ring Oscillator (GRO) TDC

- Enable ring oscillator only during measurement intervals
 - Hold the state of the oscillator between measurements
- Quantization error becomes first order noise shaped!
 - \blacksquare e[k] = Phase Error[k] + q[k] q[k-1]
 - Averaging dramatically improves resolution!

53

Improve Resolution By Using All Oscillator Phases

- Raw resolution is set by inverter delay
- M.H. Perrott Effective resolution is dramatically improved by averaging

GRO TDC Also Shapes Delay Mismatch

- Barrel shifting occurs through delay elements across different measurements
 - Mismatch between delay elements is first order shaped!

Simple gated ring oscillator inverter-based core

Gate the oscillator by switching the inverter cores to the power supply

GRO Prototype

 GRO implemented as a custom 0.13 μm CMOS IC

Measured GRO Results Confirm Noise Shaping

Measured deadzone behavior of inverter-based GRO

- Deadzones were caused by errors in gating the oscillator
- GRO "injection locked" to an integer ratio of F_s
- Behavior occurred for almost all integer boundaries, and some fractional values as well

Noise shaping benefit was limited by this gating error

Next Generation GRO: Multi-path oscillator concept

Single Input Multiple Inputs Single Output **Single Output**

- Use multiple inputs for each delay element instead of one
- Allow each stage to optimally begin its transition based on information from the entire GRO phase state

Key design issue is to ensure primary mode of oscillation

Multi-path inverter core

Proposed multi-path gated ring oscillator

Hsu, Straayer, Perrott ISSCC 2008

- Oscillation frequency near 2GHz with 47 stages...
- Reduces effective delay per stage by a factor of 5-6!
- Represents a factor of 2-3 improvement compared to previous multi-path oscillators

A simple measurement approach...

- 2 counters per stage * 47 stages = 94 counters each at 2GHz
- Power consumption for these counters is unreasonable

Need a more efficient way to measure the multi-path GRO

Count Edges by Sampling Phase

- **Calculate phase from:**
 - A single counter for coarse phase information (keeps track of phase wrapping)
 - **GRO** phase state for fine count information
- 1 counter and N registers → much more efficient

Proposed Multi-Path Measurement Structure

- Multi-path structure leads to ambiguity in edge position
- Partition into 7 cells to avoid such ambiguity
 - Requires 7 counters rather than 1, but power still OK

Prototype 0.13μm CMOS multi-path GRO-TDC

Straayer et al., VLSI 2008

- Two implemented versions:
 - **8-bit, 500Msps**
 - 11-bit, 100Msps version
- 2-21mW power consumption depending on input duty cycle

Measured noise-shaping of multi-path GRO

- Data collected at 50Msps
- More than 20dB of noise-shaping benefit
- 80fs_{rms} integrated error from 2kHz-1MHz
- Floor primarily limited by 1/f noise (up to 0.5-1MHz)

Measured deadzone behavior for multi-path GRO

- Only deadzones for outputs that are multiples of 2N
 - 94, 188, 282, etc.
 - No deadzones for other even or odd integers, fractional output
- Size of deadzone is reduced by 10x

The Issue of Quantization Noise Due to Divider Dithering

The Nature of the Quantization Noise Problem

- Increasing PLL bandwidth increases impact of $\Delta\Sigma$ fractional-N noise
 - Cancellation offers a way out!

Previous Analog Quantization Noise Cancellation

- Phase error due to $\Delta\Sigma$ is predicted by accumulating $\Delta\Sigma$ quantization error
- Gain matching between PFD and D/A must be precise

Matching in analog domain limits performance

71

Proposed All-digital Quantization Noise Cancellation

- Scale factor determined by simple digital correlation
- Analog non-idealities such as DC offset are completely eliminated

Details of Proposed Quantization Noise Cancellation

- Correlator out is accumulated and filtered to achieve scale factor
 - Settling time chosen to be around 10 us
- See analog version of this technique in Swaminathan et.al., **ISSCC 2007**

Proposed Digital Wide BW Synthesizer

- Gated-ring-oscillator (GRO) TDC achieves low in-band noise
- All-digital quantization noise cancellation achieves low out-of-band noise
- Design goals:
 - 3.6-GHz carrier, 500-kHz bandwidth
 - <-100dBc/Hz in-band, <-150 dBc/Hz at 20 MHz offset</p>

74

Overall Synthesizer Architecture

Note: Detailed behavioral simulation model available at http://www.cppsim.com

Dual-Port LC VCO

- Frequency tuning:
 - Use a small 1X varactor to minimize noise sensitivity
 - Use another 16X varactor to provide moderate range
 - Use a four-bit capacitor array to achieve 3.3-4.1 GHz range

76

Digitally-Controlled Oscillator with Passive DAC

- Goals of 10-bit DAC
 - Monotonic
 - Minimal active circuitry and no transistor bias currents

array covers 3.3-4.1GHz

Full-supply output range

Operation of 10-bit Passive DAC (Step 1)

- 5-bit resistor ladder; 5-bit switch-capacitor array
- Step 1: Capacitors Charged
 - Resistor ladder forms $V_L = M/32 \cdot V_{DD}$ and $V_H = (M+1)/32 \cdot V_{DD}$, where M ranges from 0 to 31
 - N unit capacitors charged to V_H, and (32-N) unit capacitors charged to V_I

Operation of 10-bit Passive DAC (Step 2)

- Step 2: Disconnect Capacitors from Resistors, Then Connect Together
 - Achieves DAC output with first-order filtering
 - Bandwidth = 32• $C_u/(2\pi \cdot C_{load}) \cdot 50MHz$
 - Determined by capacitor ratio
 - Easily changed by using different C_{load}

79

Now Let's Examine Divider ...

Issues:

GRO range must span entire reference period during initial lock-in

Proposed Divider Structure

- Resample reference with 4x division frequency
 - Lowers GRO range to one fourth of the reference period

81

Proposed Divider Structure (cont'd)

- Place ΔΣ dithered edge away from GRO edge
 - Prevents extra jitter due to divide-value dependent delay

Dual-Path Loop Filter

- Step 1: reset
- Step 2: frequency acquisition
 - V_c(t) varies
 - $\mathbf{V}_{f}(t)$ is held at midpoint
- Step 3: steady-state lock conditions
 - V_c(t) is frozen to take quantization noise away
 - $\Delta\Sigma$ quantization noise cancellation is enabled

Fine-Path Loop Filter

- Equivalent to an analog lead-lag filter
 - Set zero (62.5kHz) and first pole (1.1MHz) digitally
 - Set second pole (3.1MHz) by capacitor ratio
- First-order $\Delta\Sigma$ reduces in-band quantization noise

Linearized Model of PLL Under Fine-Tune Operation

- Standard lead-lag filter topology but implemented in digital domain
 - Consists of accumulator plus feedforward path

Same Technique Poses Problems for Coarse-Tune

Fix: Leverage the Divider as a Signal Path

Linearized Model of PLL Under Coarse-Tune Operation

- Routing of signal path into Sigma-Delta controlling the divider yields a feedforward path
 - Adds to accumulator path as both signals pass back through the divider
 - Allows reduction of coarse DAC bandwidth

 Noise impact of coarse DAC on VCO is substantially lowered

Die Photo of Prototype

- 0.13-µm CMOS
- Active area: 0.95 mm²
- Chip area: 1.96 mm²
- V_{DD}: 1.5V
- Current:
 - 26mA (Core)
 - 7mA (VCO output buffer at 1.1V)

GRO-TDC:

- **2.3mA**
- 157X252 um²

Power Distribution of Prototype IC

Total Power: 46.1mW

 Notice GRO and digital quantization noise cancellation have only minor impact on power (and area)

Measured Phase Noise at 3.67GHz

- Suppresses quantization noise by more than 15 dB
- Achieves204 fs(0.27 degree)integratednoise (jitter)
 - Reference spur: -65dBc

Calculation of Phase Noise Components

 See wideband digital synthesizer tutorial available at http://www.cppsim.com

Measured Worst Spurs over Fifty Channels

- Tested from 3.620 GHz to 3.670 GHz at intervals of 1 MHz
 - Worst spurs observed close to integer-N boundary (multiples of 50 MHz)
- -42dBc worst spur observed at 400kHz offset from boundary

Conclusions

- Digital Phase-Locked Loops look extremely promising for future applications
 - Very amenable to future CMOS processes
 - Excellent performance can be achieved
- Analysis of digital PLLs is similar to analog PLLs
 - PLL bandwidth is often chosen for best noise performance
 - TDC (or Ref) noise dominates at low frequency offsets
 - DCO noise dominates at high frequency offsets
- Behavioral simulation tools such as CppSim allow architectural investigation and validation of calculations
- TDC structures are an exciting research area
 - Ideas from A-to-D conversion can be applied

Innovation of future digital PLLs will involve joint circuit/algorithm development

Supplemental Slides

Section 1: Digital Fractional-N Frequency
Synthesizers

A First Glance at Fractional-N Signals ($F_{out} = 4.25F_{ref}$)

- Constant divide value of N = 4 leads to frequency error
 - Phase error accumulates in unbounded manner

96

TI Approach to Fractional Division

- Wrap e[k] by feeding delay chain in TDC with out(t)
- Counter provides information of when wrapping occurs

Key Issues

- Counter, re-timing register, and delay stages of TDC must operate at very high speeds
 - Power consumption can be an issue
- Calibration of TDC scale factor required to achieve proper unwrapping of e[k]
 - Can be achieved continuously with relative ease

See Staszewski et. al, JSSC, Dec 2005

Fractional-N Synthesizer Approach $(F_{out} = 4.25F_{ref})$

- Accumulator guides the "swallowing" of VCO cycles
- Average divide value of N = 4.25 is achieved in this case

The Accumulator as a Phase "Observer"

- Accumulator residue corresponds to an estimate of the instantaneous phase error of the PLL
 - Fractional value (i.e., 0.25) yields the slope of the residue
- Carry out signal is asserted when the phase error deviation (i.e. residue) exceeds one VCO cycle
 - Carry out signal accurately predicts when a VCO cycle should be "swallowed"

Improve Dithering Using Sigma-Delta Modulation

- Provides improved noise performance over accumulator-based divide value dithering
 - Dramatic reduction of spurious noise
 - Noise shaping for improved in-band noise
 - Maintains bounded phase error signal
- Digital Σ - Δ fractional-N synthesizer architecture is directly analogous to analog Σ - Δ fractional-N synth.

Model of Digital Σ–Δ Fractional-N PLL

 Divider model is expanded to include the impact of divide value variations

Transfer Function View of Digital Σ - Δ Fractional-N PLL

- Σ-Δ quantization noise now impacts the overall PLL phase noise
 - High PLL bandwidth will increase its impact
- Digital PLL implementation simplifies quantization noise cancellation

See: Hsu, Straayer, Perrott JSSC Dec 2008 for details

103

For More Information on Digital Fractional-N PLLs

- Check out the CppSim tutorial:
 - Design of a Low-Noise Wide-BW 3.6GHz Digital Σ - Δ Fractional-N Frequency Synthesizer Using the PLL Design Assistant and CppSim

www.cppsim.com

Supplemental Slides

Section 2: DCO Modeling

Leveraging Dithering for Fine Control of DCO

- Increase resolution by Σ - Δ dithering of fine cap array
- Reduce noise from dithering by
 - Using small unit caps in the fine cap array
 - Increasing the dithering frequency (defined as $1/T_c$)
 - We will assume $1/T_c = M/T$ (i.e. M times reference frequency)

106

Time-Domain Modeling of the DCO

- Input to the DCO is supplied by the loop filter
 - Clocked at 1/T (i.e., reference frequency)
- Switched capacitors are dithered by Σ - Δ at a higher rate
 - Clocked at $1/T_c = M/T$

M.H. Perrott

- Held at a given setting for duration T_c
- Fine cap element value determines K_v of VCO
 - Units of K_v are Hz/unit cap

107

Frequency Domain Modeling of DCO

- Upsampler and zero-order hold correspond to discrete and continuous-time sinc functions, respectively
- Σ - Δ has signal and noise transfer functions ($H_{stf}(z)$, $H_{ntf}(z)$)
 - Note: var(q_{raw}[k]) = 1/12 (uniformly distributed from 0 to 1)

Simplification of the DCO Model

- Focus on low frequencies for calculations to follow
 - Assume sinc functions are relatively flat at the low frequencies of interest
 - Upsampler is approximated as a gain of M
 - Zero-order hold is approximated as a gain of T_c
- Assume $H_{stf}(z) = 1$
 - True for Σ - Δ structures such as MASH (ignoring delays)

Further Simplification of DCO Model

- Proper design of DCO will yield quantization noise that is below that of the intrinsic phase noise (set by tank Q, etc.)
 - Assume q[k] = 0 for simplified model
- Note that T = MT_c

Supplemental Slides

Section 3: Derivation of VCO Quantization Noise Due to Capacitor Dithering

Calculation of Quantization Noise from Cap Dithering

DT to CT spectral calculation:

$$S_{\Phi_{out}}(f)\Big|_{\text{dco,quant}} = \frac{1}{T_c} \left| T_c \frac{2\pi K_v}{j2\pi f} \right|^2 \left| H_{ntf}(e^{j2\pi fT_c}) \right|^2 S_{q_{raw}}(f)$$

$$= T_c \left| \frac{K_v}{f} \right|^2 \left| H_{ntf}(e^{j2\pi fT_c}) \right|^2 \frac{1}{12}$$

- $S_{q_{raw}}(f) = 1/12$ since $q_{raw}[k]$ uniformly distributed from 0 to 1
- $H_{\text{ntf}}(z)$ is often 1- z^{-1} (first order) or $(1-z^{-1})^2$ (second order)

Example Calculation for DCO Quantization Noise

- Assumptions (Out freq = 3.6 GHz)
 - Dithering frequency is 200 MHz (i.e., $1/T_c = 200e6$)
 - Σ - Δ has first order shaping (i.e., $H_{ntf}(z) = 1 z^{-1}$)
 - Fine cap array yields 12 kHz/unit cap (i.e., K_{ν} = 12e3)

$$S_{\Phi_{out}}(f)\Big|_{\text{dco,quant}} = T_c \left| \frac{K_v}{f} \right|^2 \left| H_{ntf}(e^{j2\pi f T_c}) \right|^2 \frac{1}{12}$$

$$= \frac{1}{200e6} \left| \frac{12e3}{f} \right|^2 \left| 1 - e^{j2\pi f/200e6} \right|^2 \frac{1}{12}$$

At a frequency offset of f = 20 MHz:

$$= \frac{1}{200e6} \left| \frac{12e3}{20e6} \right|^2 \left| 1 - e^{j2\pi 1/10} \right|^2 \frac{1}{12} = 5.73 \cdot 10^{-17}$$

 $10\log(5.73\cdot10^{-17}) = -162.4 \ dBc/Hz$ (at 20 MHz offset)

Below the phase noise (-153 dBc/Hz at 20 MHz) in the example

Supplemental Slides Section 4: Derivation of Discrete-Time Loop Filter Parameterization based on Continuous-Time Specifications

Transfer Function Design using PLL Design Assistant

PLL Design Assistant assumes continuous-time open loop transfer function $A_{calc}(s)$:

$$A_{calc}(s) = \frac{K}{s^{type}} \frac{1 + s/w_z}{1 + s/w_p}$$

- Above parameters are calculated based on the desired closed loop PLL bandwidth, type, and order of rolloff (which specify G(s))
- For 100 kHz bandwidth, type = 2, 2nd order rolloff, we have:
- $K = 3.0 \times 10^{10}$
 - $w_p = 2\pi (153 \text{ kHz})$
 - $w_z = 2\pi (10 \text{ kHz})$

Continuous-Time Approximation of Digital PLL

At low frequencies (i.e., |sT| << 1), we can use the first order term of a Taylor series expansion to approximate

$$z^{-1} = e^{-sT} \approx 1 - sT$$

Resulting continuous-time approximation of open loop transfer function of digital PLL:

$$A(s)pprox rac{T}{\Delta t_{del}}rac{K_{v}}{N}rac{1}{s}H(z)\left|_{z^{-1}pprox 1-sT}
ight|$$

Applying PLL Design Assistant to Digital PLL Design

Given the continuous-time approximation of A(s), we then leverage the PLL Design Assistant calculation:

$$A(s) = A_{calc}(s)$$

Also note that:

$$z^{-1} = 1 - sT \implies s = \frac{1 - z^{-1}}{T}$$

Given the above, we obtain:

$$\frac{T}{\Delta t_{del}} \frac{K_v}{N} \frac{1}{s} H(z) \Big|_{s = \frac{1 - z^{-1}}{T}} = \frac{K}{s^{type}} \frac{1 + s/w_z}{1 + s/w_p} \Big|_{s = \frac{1 - z^{-1}}{T}}$$

$$\Rightarrow H(z) = \frac{\Delta t_{del}}{T} \frac{N}{K_v} \left(\frac{K}{s^{type-1}} \right) \frac{1 + s/w_z}{1 + s/w_p} \bigg|_{s = \frac{1-z^{-1}}{T}}$$

Simplified Form for Digital Loop Filter (Type II PLL)

From previous slide:

$$H(z) = \frac{\Delta t_{del}}{T} \frac{N}{K_v} \left(\frac{K}{s^{type-1}} \right) \frac{1 + s/w_z}{1 + s/w_p} \bigg|_{s = \frac{1-z^{-1}}{T}}$$

Simplified form with type = 2 (assume order = 2)

$$H(z) = K_{LF} \left(\frac{1}{1 - z^{-1}} \right) \frac{1 - b_1 z^{-1}}{1 - a_1 z^{-1}}$$

$$a_1 = \frac{1}{1 + w_p T} \qquad b_1 = \frac{1}{1 + w_z T}$$

$$K_{LF} = \left(\frac{\Delta t_{del}}{T/N}\right) \frac{K}{K_v} \left(\frac{w_p}{w_z}\right) \frac{a_1}{b_1} T \qquad \qquad \textbf{Note:} \\ \textbf{\textit{T}_{dco}} = \textbf{\textit{T/N}}$$

Typically implemented by gain normalization circuit