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Fast and Accurate System Level
Simulation of Time-Based Circuits

Using CppSim and VppSim



Modern Mixed Signal Circuit Design

 A Programmable 
MEMS Oscillator
- Analog       

Temperature sensor, 
ADC, oscillator 
sustaining circuit

- Digital
signal processing

- RF
clocking (2.5 GHz)

- MEMS
high Q resonator

 System level design is 
critical
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Consider a Top Down, Mixed-Signal Design Flow
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Good Execution Is Certainly A Key to Success
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 Execution often 
becomes key focus
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New Circuit Architectures Require Innovation

System Design
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Digital
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 Key to innovation is 
fast and detailed
simulation of new 
architectures
- Allows evaluation 

of many new ideas
- Pinpoints key 

problem areas

CppSim



Schematic Based Simulation using CppSim/VppSim

 Schematic
- Provides 

hierarchical 
description of 
system 
topology

 Code blocks
- Specify 

module
behavior
using 
templated C++ 
code or 
Verilog code

 Designers graphically develop system based on a 
library of C++/Verilog symbols and code
- Easy to create new symbols  with accompanying code
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CppSim Automates C++ Class Generation

 Modules are identified from schematic and then
- CppSim modules are converted into C++ classes 
- Verilog modules are translated into C++ classes using Verilator
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CppSim Assembles C++ Classes into Overall Sim Code
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 Block-by-block 
execution of each 
module at each 
time step

 Hierarchical 
description is 
retained



Time As A Signal

 CppSim developed to accurately model time in circuits
9
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System-Level Modeling:  A Basic Example

 Opamp is a nonlinear, transistor-level circuit
- Device level representation mandates SPICE-level simulation

Vo

Vin C1 C2

R1

R2
V1

V2

M7

M6Iref

M1 M2

M3

M8

Vo

CcRc

M4

M5

Vin+Vin-

10



Opamps Often Modeled at Transfer Function Level

 Works well for small perturbations about steady-state
- Key parameters are gain and bandwidth
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A Simple Block Diagram Model of Opamp

 Approximates first order behavior of opamp
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Inclusion of Second Order Effects

 Offset, noise, and nonlinearity of front end-differential pair
- Parasitic poles are also easy to add as additional blocks
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Overall Block Diagram Model

 Unilateral flow through blocks allows fast simulation
- Compute block outputs one at a time for each time step
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Advantages of Block-by-Block Computation

 Simple, fast computational structure
- Simply perform computation for each block one at a time 

for each time step
 Extends to hierarchical design quite easily

 High level of system complexity can be handled
- Overall computational load is simply the sum of the 

computation required for each block
- Contrast with SPICE whose computational load grows 

exponentially with the number of elements

1 2 3 4

5

6
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The Issue of Delay with Block-by-Block Computation

 Minimum possible delay within a feedback loop is one 
sample period
- Example:  Block 2 will not receive updated value from 

Block 5 until next time sample
- For unity gain crossover frequency fo and delay Ts:

 Phase margin reduced by fo•Ts•360º

1 2 3 4

5

6

1 sample delay = Ts

Time step of simulation must be small compared to 
bandwidth of feedback loops being simulated
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The Issue of Block Order

 Poor ordering of blocks leads to additional delay within 
feedback loops
- Issue is made worse if blocks computed concurrently

 Leads to one sample delay per block
 Block-by-block computation requires additional 

algorithm to achieve minimum delay ordering

1 2 4 3

5

6

1 sample delay = Ts

additional 1 sample delay

CppSim provides automatic minimum delay ordering
and allows user specified ordering
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Time-Based Circuits

 Traditional analog circuits utilize voltage and current 
with bandwidth constrained signaling

 Time-based circuits utilize the timing of edges produced 
by “digital” circuits

- Modern CMOS processes are offering faster edge rates 
and lower delay through digital circuits

High bandwidth of time-based circuits
creates challenges for high speed simulation

18



A Common Time-Based Circuit

- High output frequency       High sample rate 
- Long time constants          Long time span for transients

Large number of simulation time steps required

PFD Charge
Pump

Nsd[m]

out(t)e(t)


Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

10-100 kHz

M
M+1

1-10 GHz

 Consider a fractional-N synthesizer as a prototypical 
time-based circuit
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Continuously Varying Edges Lead to Accuracy Issues

 PFD output has very high bandwidth
- Difficult to achieve high accuracy within a conventional 

discrete-time or SPICE level simulator
 Non-periodic dithering of divider complicates matters

- Periodic, steady-state methods do not apply

PFD Charge
Pump

Nsd[m]

out(t)e(t)


Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1
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Consider A Classical Constant-Time Step Method

 Directly sample the PFD output according to the 
simulation sample period
- Simple, fast, readily implemented in Matlab, Verilog, C++

 Issue – quantization noise is introduced
- This noise can overwhelm the PLL noise sources we are 

trying to simulate

PFD
e(t)ref(t)

e(t)
t

e[n]
n

Sample Period = Ts(Johns and Martin,
Analog Integrated Circuit Design)
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Alternative:  Event Driven Simulation

 Set simulation time samples at PFD edges
- Sample rate can be lowered to edge rate!

PFD
e(t)ref(t)

Sample Period Non-constant

e(t)
t

e[n]
n

Tk Tk+1
(Smedt et al, CICC ’98,
Demir et al, CICC ’94,
Hinz et al, Circuits and Systems ’00)
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Issue:  Non-Constant Time Step Brings Complications

 Filters and noise sources must account for varying time 
step in their code implementations

 Spectra derived from mixing and other operations can 
display false simulation artifacts

 Setting of time step becomes progressively complicated 
if multiple time-based circuits simulated at once

PFD
e(t)ref(t)

Sample Period Non-constant

e(t)
t

e[n]
n

Tk Tk+1
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Is there a better way?
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Proposed Approach: Use Constant Time Step

 Straightforward CT to DT transformation of filter blocks
- Use bilinear transform or impulse invariance methods

 Overall computation framework is fast and simple
- Simulator can be based on Verilog, Matlab, C++ 
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e(t)

t

1

0

e[n]

n
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Ts v[n]
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Problem: Quantization Noise at PFD Output

 Edge locations of PFD output are quantized
- Resolution set by time step:  Ts

 Reduction of Ts leads to long simulation times
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Proposed Approach: View as Series of Pulses

 Area of each pulse set by edge locations
 Key observations:

- Pulses look like impulses to loop filter
- Impulses are parameterized by their area and time offset
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t
Loop Filter

h(t)

v(t)

e(t)
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1
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Proposed Area Conservation Method

 Set e[n] samples according to pulse areas
- Leads to very accurate results
- Fast computation
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Double_Interp Protocol

 Protocol sets signal samples to -1 or 1 except for 
transitions
- Transition values between -1 and 1 are directly related to 

the edge time location
- Can be implemented in C++, Verilog, and Matlab/Simulink
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VCO is a Key Block for Double_Interp Encoding

 The VCO block is the key translator from a bandlimited 
analog input to an edge-based waveform
 We can create routines in the VCO that calculate 

the edge times of the output and encode their 
values using the double_interp protocol

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

(Assume VCO output
is a square-wave
for this discussion)
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Calculation of Transition Time Values

 Model VCO based on its phase

v[n]

VCO

out[n]

π

Φvco(t)

t

εk

out[n]

n
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Calculation of Transition Time Values (cont.)

 Determine output transition time according to phase

v[n]

VCO

out[n]

π

Φvco(t)

t

Φ[k]

Φ[k-1]

out(t)

εk

π
out[n]

n
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Calculation of Transition Time Values (cont.)

 Use first order interpolation to determine transition value

v[n]

VCO

out[n]

π
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tεk Φ[k]-Φ[k-1]
π-Φ[k-1]

=
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out[n] n

εk

π

2 -1

out[n]
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Processing of Edges using Double_Interp Protocol

 Frequency divider block simply passes a sub-
sampling of edges based on the VCO output and 
divide value

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
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ref[n]

div[n]

34



Processing of Edges using Double_Interp Protocol

 Phase Detector compares edges times between 
reference and divided output and then outputs pulses 
that preserve the time differences

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
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ref[n]
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Processing of Edges using Double_Interp Protocol

 Charge Pump and Loop filter operation is 
straightforward to model
 Simply filter pulses from phase detector as 

discussed earlier

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]
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Using the Double_Interp Protocol with Digital Gates

 Relevant timing information contained in the input 
that causes the output to transition
- Determine which input causes the transition, then pass 

its transition value to the output

a[n] n

b[n] n

n

a
b

out

out[n]

D
Q
Q

clk[n] n

out[n] n

n

clk
out

out

out[n]
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Using the Double_Interp Protocol with Sine Waves

 In some systems we must deal directly with sine waves
- An explicit conversion module should be utilized

 We can convert to double_interp protocol using a similar 
interpolation technique as described earlier

- See gmsk_limitamp module within GMSK_Example library
 Used in module gmsk_pll_transmitter in the same library

Conversion
Module

Ts

1

-1
osc_buf[k] double_interp

osc_out[k] double

osc_buf[k]osc_out[k]
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Summary of Block-by-Block Computation Method

 Requires unilateral flow through blocks
 Impacts phase margin of feedback loops

- Need 1/Ts >> bandwidth of feedback loop
- Need proper ordering of blocks (automatic in CppSim)

 Constant time step simplifies simulation
- Easier block descriptions
- Frequency domain analysis become straightforward
- Time-based signals handled with double_interp protocol

1 2 3 4

5

6
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Simulation of Switched Capacitor Circuits

 Capacitor network with switches can be modeled with 
unilateral flow blocks, but many practical issues:
- Very challenging for beginners, tedious for experts
- Difficult to check correctness of model
- Difficult to investigate alternative architectures

C2

Vin(t)

Vref

Vout(t)
C1

ph1(t) ph2(t)

We need a way to automate the modeling process…
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Automatic Unilateral Model Generation

 A linear network with switches can be represented as a 
state-space model with switch dependent matrices
- An equivalent unilateral flow block is created

C2

Vin(t)

Vref

Vout(t)
C1

vin2
vin1 vout

Vref

vin2

vin1 voutVin(t)
Vout(t)

ph1(t)
ph2

ph2
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ph2(t)

ph1

ph1(t)
ph2(t)
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CppSim Approach to Linear Networks with Switches

 User specifies the CppSim model for linear elements, 
switches, and diodes using electrical_element: command
- Draw the schematic and CppSim takes care of the rest!

C2

Vin(t)

Vref

Vout(t)
C1

Vref

vin2

vin1 voutVin(t)
Vout(t)

ph1(t)

ph2
ph1

ph2(t)

ph1(t)
ph2(t)

electrical_element:
capacitor ...

electrical_element:
electrical_switch ...

auto-generated
CppSim model
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Transient Noise Analysis is Supported

 Resistors, switches, voltage/current thermal + 1/f noise
 For kT/C noise, need adequately small time step, Ts- Accuracy requires 1/Ts > 20*bandwidth of switch settling time

C2

Vin(t)

Vref

Vout(t)
C1

Vref

vin2

vin1 voutVin(t)
Vout(t)

ph1(t)

ph2
ph1

ph2(t)

ph1(t)
ph2(t)

electrical_element:
capacitor ...

electrical_element:
electrical_switch ...
      ... noise_enable = 1

auto-generated
CppSim model
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Time Based Signals with Electrical Elements

 Constant time step of CppSim could lead to 
quantization effects on sample times of clock edges
- Would result in sampling errors of input waveform

C2

Vin(t)

Vref

Vout(t)
C1

ph1(t) ph2(t)

Ts

ph1(t)
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Leverage Double_Interp Protocol

 Electrical switches within CppSim require double_interp
signals for the control nodes
- Good timing accuracy achieved despite constant time step

C2

Vin(t)

Vref

Vout(t)
C1

ph1(t) ph2(t)

Ts

ph1(t)

1

-1
ph1[k]
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Feeding Bool Input with Double_Interp Signal

 Conversion module automatically inserted
- -1,1 signaling converted to 0,1 signaling
- High resolution edge timing information is lost

Ts

osc1(t)

1

-1
osc1[k]

1
0

in[k]

double_interp

bool

dig_modclk_gen

bool in
double_interp osc1
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Feeding Double_Interp Input with Bool Signal

 Automatic translation of 0,1 signaling to -1,1 signaling
- Loss of timing information causes quantization noise!

Ts

osc1(t)

1

-1
osc1[k]

1
0

buf1[k]

1

-1
ph1[k]

double_interp

bool

double_interp

dig_mod

C2

Vin(t)

Vref Vout(t)
C1

ph2

clk_gen

bool buf1bool in
double_interp osc1 double_interp ph1
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Restoring Fine Timing Information

 Use dff or reg_double_retime (Library: CppSimModules)
- Signal re-inherits timing information from clock

Ts

osc1(t)

1

-1
osc1[k]

1
0

buf1[k]

1

-1
ph1[k]

double_interp

bool

double_interp

dig_mod

C2

Vin(t)

Vref Vout(t)
C1

ph2

clk_gen

bool buf1bool in
double_interp osc1 double_interp ph1

Reg

double_interp osc1

48



Supported Electrical Elements in CppSim

capacitor inductorresistor

1:n

electrical_transformer mutual_inductors

m

l1 l2

vcvsvccs cccs ccvs ccvs_single_out

electrical_diode electrical_switch dc_voltage dc_current

2

in
2in

en

dc_current_with_noisedc_voltage_with_noise dc_voltage_with_noise_sq dc_current_with_noise_sq

en
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CppSim Code Versus Electrical Element Modules

 Which approach is best for circuit blocks such as opamps?

C2

Vin(t)

Vref

Vout(t)
C1

ph1(t) ph2(t)

electrical_element:

rogmV1V1

vout

Cin Co

V+

V-

code:
Filter filt1(“K”,“1+1/wo*s”,...)

vout = filt1(vinp-vinm)
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Complexity Issue with Electrical Element Modules

 State-space calculations increase as (number of nodes)2

- Large networks dramatically slow down simulation speed

C2

Vin(t)

Vref Vout(t)C1

ph1(t) ph2(t)

C4

Vref Vout2(t)C3

ph1(t) ph2(t)

electrical_element:

rogmV1V1

vout

Cin Co

V+

V-
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Code Modules Allow De-Coupling Between Networks

 Code modules are not sensitive to loading
- Allows CppSim to automatically separate into sub-networks

C2

Vin(t)

Vref Vout(t)C1

ph1(t) ph2(t)

C4

Vref Vout2(t)C3

ph1(t) ph2(t)

code:
Filter filt1(“K”,“1+1/wo*s”,...)

vout = filt1(vinp-vinm)

V

Code modules preferred to achieve fast simulation speed
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Impact of Hierarchy on Electrical Element Networks

 CppSim implicitly inserts unity gain voltage buffers at 
all inputs and outputs of instances
- Allows hierarchical simulation structure of overall 

system to be retained
- De-couples networks at instance level to discourage 

creation of large state-space models

Vin(t) Vout(t)

unity gain
voltage
buffer

Instance 1 Instance 2

Linear Network Linear Network
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Example:  A Second Order RC Network

 Resulting transfer function is NOT simply the cascade 
of two identical RC filters
- Actual pole locations are influenced by mutual coupling 

of the two first-order RC networks

R1 R2

C1 C2

Vin(t) Vout(t)
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Cascade of First Order RC Networks as Instances

 This would appear to be the same as cascading the 
RC networks at the same level of hierarchy…

R1 R2

C1 C2

Vin(t) Vout(t)

Instance 1 Instance 2
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Recall Unity Gain Voltage Buffer Insertion

 CppSim implicitly adds unity gain voltage buffers
- Resulting transfer function is actually the cascade of 

two identical RC filters

R1 R2

C1 C2

Vin(t) Vout(t)

unity gain
voltage
buffer

Instance 1 Instance 2

How do you achieve network coupling with hierarchy?
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Electrical Element Modules Form Coupled Networks

Vin(t) Vout(t)
electrical_element:
resistor ...
capacitor ...

Instance 1 Instance 2

electrical_element:
resistor ...
capacitor ...

R1 R2

C1 C2

CppSim allows one level of hierarchy for coupled networks
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Voltage-Controlled Capacitance and Resistance

 Electrical elements are limited to linear components
- Combine CppSim modules with electrical elements to 

create nonlinear circuits
 Key technique:  use CppSim module to perturb the 

behavior of the linear electrical element based on the 
voltage across its terminals and the input control voltage

 Examples are provided of voltage-controlled 
capacitance and resistance in CppSim (Windows/Mac)
- Library:  Electrical_Examples

 Voltage-controlled capacitance:  test_varcap_electrical
 Voltage-controlled resistance:  test_var_res_electrical

58
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CppSim versus VppSim

 CppSim
- C++ is the simulation engine

 Verilog code translated into C++ classes using Verilator
- Best option when system simulation focuses on analog 

performance with digital support
 VppSim

- Verilog is the simulation engine
 C++ blocks accessed through the Verilog PLI

- Best option when system simulation focuses on digital 
verification with C++ stimulus

Constant time step approach allows seamless
connection between C++ and Verilog models
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VppSim Example: Embed CppSim Module in NCVerilog

module: leadlagfilter
parameters: double fz, double fp, 

double gain
inputs: double in
outputs:  double out
static_variables:
classes: Filter filt("1+1/(2*pi*fz)s",

"C3*s + C3/(2*pi*fp)*s^2",
"C3,fz,fp,Ts",1/gain,fz,fp,Ts);

init: 
code:
filt.inp(in);
out = filt.out;

////// Auto-generated from CppSim module //////
module leadlagfilter(in, out);

parameter fz = 0.00000000e+00;
parameter fp = 0.00000000e+00;
parameter gain = 0.00000000e+00;
input in;
output out;

wreal in;
real in_rv;
wreal out;
real out_rv;

assign out = out_rv;

initial begin
assign in_rv = in;

end

always begin
#1
$leadlagfilter_cpp(in_rv,out_rv,fz,fp,gain);

end
endmodule

CppSim module Resulting Verilog module
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Use timing_sensitivity: unless you need to perform 
computation during every time step

(Note: no penalty for EdgeDetect method in CppSim)

EdgeDetect() versus timing_sensitivity: for VppSim

////// Auto-generated from CppSim module //////
module dig_mod(a,b,clk,y,r);

always begin
#1
$dig_mod_cpp(a,b,clk,y,r);

end
endmodule

////// Auto-generated from CppSim module //////
module dig_mod(a,b,clk,y,r);

always@(posedge clk) begin 
$dig_mod_cpp(a,b,clk,y,r);

end

endmodule

EdgeDetect (simplified) timing_sensitivity:

 PLI routine is called
every time step
- Dramatically slows 

down VppSim!

 PLI routine is only called 
on positive clk edges
- Much less impact on 

simulation speed
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Screenshot of CppSim/VppSim (Windows Version)

Readily Interfaces with Matlab and GTKWave
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Screenshot of CppSim/VppSim (Cadence Version)

Interfaces with Matlab, 
GTKWave, and SimVision
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Free Download at www.cppsim.com
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Many Tutorials Available for CppSim/VppSim

 Switched Capacitor 2nd Order Delta-Sigma ADC
 Phase Locked Loops (Analog and Digital)
 VCO-based ADCs
 GMSK modulator
 Decision Feedback Equalization
 Optical-Electrical Downversion and Digitization
 OFDM Transceiver

See http://www.cppsim.com
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Example Benchmarks for a Full Chip Simulation

 SPICE-level model
- Checking of floating gate, over-voltage, 

startup of bandgap and regulators, etc.
 Spectre Turbo:  2 microseconds/day
 BDA:  8 microseconds/day

 Architectural model using CppSim
- Examination of noise and analog dynamics
 2.8 milliseconds/hour

 Verification model using VppSim
- Validation of digital functionality in the context of analog 

control and hybrid digital/analog systems
 7 milliseconds/minute

Tabulated simulation times for a MEMS-based oscillator:

66



Conclusion

 CppSim is designed for high productivity and versatility
- Easy to create your own code blocks

 Use existing modules to see examples, but don’t limit 
yourself to what is available

- Allows very detailed modeling of complex circuits
 You are not confined to an overly simplified model

- Invites a scripted approach to running  simulations
 Excellent integration with Matlab/Octave and Python

- Runs in Windows, Mac OS X, or within Cadence
 Has been used to simulate entire ICs in Cadence

 Extensive 12 year track record of enabling new circuit 
architectures with first chip success
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