An Efficient Approach to System Level,
Mixed-Signal Simulation
Using CppSim and VppSim

Michael H. Perrott
December 2012

Copyright © 2012 by Michael H. Perrott
All rights reserved.



Modern Mixed Signal Circuit Design

A Programmable
MEMS Oscillator

= Analog
Temperature sensot,
ADC, oscillator
sustaining circuit

= Digital
signal processing

= RF
clocking (2.5 GHz)

= MEMS
high Q resonator

System level design is
critical




Consider a Top Down, Mixed-Signal Design Flow

Schematic Creation

Extracted Layout
Creation

PVT Corners
Monte Carlo

Circuit Design

Analog

Circuit

Verification

Analog

System Design

Architecture

N

System

Verification

Circ. & Arch.

High Level

Investigation &

Analysis

Circuit Design Code Creation
Digital Place & Route

Circuit Digital Test Vectors

Verification Timing Checks
Digital

System Level
Test Vectors



Good Execution Is Certainly A Key to Success

System Design
Architecture

Innovation 1\

Circuit Design
Analog

Circuit Design
Digital

Circuit
Verification
Digital

Circuit
Verification
Analog

Execution \,

System
Verification
Circ. & Arch.

" Execution often
becomes key focus



New Circuit Architectures Require Innovation

" Key to innovation is

fast and detailed

simulation of new

architectures

= Allows evaluation
of many new ideas

= Pinpoints key
problem areas

System Design
Architecture

Innovation 1\

Circuit Design
Analog

Circuit Design
Digital

Circuit
Verification
Digital

Circuit
Verification
Analog

Execution \,

System
Verification
Circ. & Arch.




System-Level Modeling: A Basic Example

<
)
0
1
1
O
N
1
|

_.
( l )Iref :ﬂ_{ M6

M, M,

" Opamp is a nonlinear, transistor-level circuit
= Device level representation mandates SPICE-level simulation



Opamps Often Modeled at Transfer Function Level

20log(K) t-

20log |V/V4|

0dB ------

fd.om fo fp

" Works well for small perturbations about steady-state
= Key parameters are gain and bandwidth



A Simple Block Diagram Model of Opamp

- Vo | Re v,
R1 V1 -
+
Vin C1== Co—=
| -
V. Lowpass
V
} o ——°
1+S/(Ddom
V.

" Approximates first order behavior of opamp



Inclusion of Second Order Effects

= Vo | Re v,
R1 V1 -
+
Vin C1== Co—=
‘ .
Vv V2
- Voit ~ Vnoise Lowpass
V
é—» f X
1 +S/(Ddom
Vi Nonlinearity

" Offset, noise, and nonlinearity of front end-differential pair
= Parasitic poles are also easy to add as additional blocks



Overall Block Diagram Model

—>| V. V Vo
I > 1 >\ : 1+sll C >
1+SR1C1 : 272
2
V. Voif ~ Vnoise Lowpass
Vv
é—» f X [y°
1+S/(Ddom
Vi Nonlinearity

" Unilateral flow through blocks allows fast simulation
= Compute block outputs one at a time for each time step



Advantages of Block-by-Block Computation

1—»@-»3—»4 ol 6 >

L

" Simple, fast computational structure

= Simply perform computation for each block one at a time
for each time step

= Extends to hierarchical design quite easily

" High level of system complexity can be handled

= Overall computational load is simply the sum of the
computation required for each block

= Contrast with SPICE whose computational load grows
exponentially with the number of elements

11



The Issue of Delay with Block-by-Block Computation

1—»@-»3—»4 ol 6 >

T -
g 5

1 sample delay = T

" Minimum possible delay within a feedback loop is one
sample period

= Example: Block 2 will not receive updated value from
Block 5 until next time sample

= For unity gain crossover frequency f, and delay T.:
= Phase margin reduced by f_ T +360°

Time step of simulation must be small compared to
bandwidth of feedback loops being simulated

12



The Issue of Block Order

additional 1 sample delay

Y
1—»@—»4—»3 » 6
L

ol

1 sample delay = T4

" Poor ordering of blocks leads to additional delay within
feedback loops
= Issue is made worse if blocks computed concurrently

» L eads to one sample delay per block

" Block-by-block computation requires additional
algorithm to achieve minimum delay ordering

CppSim provides automatic minimum delay ordering
and allows user specified ordering

13




Time-Based Circuits

" Traditional analog circuits utilize voltage and current
with bandwidth constrained signaling

—

g—

" Time-based circuits utilize the timing of edges produced

by “digital” circuits

LY,

UV

= Modern CMOS processes are offering faster edge rates
and lower delay through digital circuits

High bandwidth of time-based circuits
creates challenges for high speed simulation

14



A Common Time-Based Circuit

10-100 kHz 1-10 GHz

Jur Anad —  WUWVWWARNVVWA

ref(t) e(t) Charge Loop (t) out(t)
.F)FD Pump Filter |_>®_
UL
div(t)T I Divider |<

—_— e

Nsalm] |\ A | N[m]T M+1
Modu|ator| MJLH_H_"-“_”.”_[“_L”

" Consider afractional-N synthesizer as a prototypical
time-based circuit

= High output frequency ® High sample rate
= Long time constants ® Long time span for transients

Large number of simulation time steps required

15



Continuously Varying Edges Lead to Accuracy Issues

Jur e — WY

ref(t) PED e(t) Charge Loop vy OUt(t)
Pump Filter

_“c;!:,r!f)T IDIVIdeI‘ |<

Neg[m] |\ A | N[m]T M+1
Modu|ator| MJLl-l_l-l_l-”.l_lﬂ.”_".l_l_”

" PFD output has very high bandwidth

= Difficult to achieve high accuracy within a conventional
discrete-time or SPICE level simulator

" Non-periodic dithering of divider complicates matters
= Periodic, steady-state methods do not apply

16



Consider A Classical Constant-Time Step Method

o nnn m

ref(t) e(t)

LLS

Sample Period = Ty

(Johns and Martin,
Analog Integrated Circuit Design)

" Directly sample the PFD output according to the
simulation sample period

= Simple, fast, readily implemented in Matlab, Verilog, C++
" |ssue — quantization noise is introduced

= This noise can overwhelm the PLL noise sources we are
trying to simulate



Alternative: Event Driven Simulation

J}erl_r&.—») PFD il » N _‘ Jvl_l t

1 T e[n] l

k

l n
Tk+1

(Smedt et al, CICC "98, Sample Period Non-constant

Demir et al, CICC '94,

Hinz et al, Circuits and Systems '00)

" Set simulation time samples at PFD edges
= Sample rate can be lowered to edge rate!

18



Issue: Non-Constant Time Step Brings Complications

e meo || |
ref(t) e(t) , . : t

nn f eln] i ]

k

I n
Tk+1

Sample Period Non-constant

" Filters and noise sources must account for varying time
step in their code implementations

" Spectraderived from mixing and other operations can
display false simulation artifacts

" Setting of time step becomes progressively complicated
If multiple time-based circuits simulated at once

19



Is there a better way?

20



Proposed Approach: Use Constant Time Step

e(t)
—

e[n]

h(t)

I~

v (t)
—)

Loop Filter

.

h[n] = Ts+h(Tsn)

Ts

[

v[n]

Loop Filter

" Straightforward CT to DT transformation of filter blocks
= Use bilinear transform or impulse invariance methods

" Overall computation framework is fast and simple
= Simulator can be based on Verilog, Matlab, C++

21



Problem: Quantization Noise at PFD Output

e(t)
—

e[n]

h(t)

I~

v (t)
—)

Loop Filter

.

h[n] = Ts+h(Tsn)

'Wmnm;"i,.. "

v[n]

Loop Filter

" Edge locations of PFD output are quantized

= Resolution set by time step: Ts

" Reduction of Ts leads to long simulation times

22



Proposed Approach: View as Series of Pulses

e(t)
—

e[n]

h(t)

I~

v (t)
—)

h

Loop Filter

.

n] = Tseh(Tsn)

ﬂ'lnnm}i,.. "

v[n]

Loop Filter

" Area of each pulse set by edge locations

" Key observations:

= Pulses look like impulses to loop filter
= Impulses are parameterized by their area and time offset

23



Proposed Area Conservation Method

e(t)

e[n]

e[lﬂ]

h(t)

- ‘N m
t

h

Loop Filter

8

n] = Tseh(Tsn)

'Wmnm;"i,.. "

Loop Filter

" Set e[n] samples according to pulse areas

= Leads to very accurate results
= Fast computation

v(t)

v[n]

24



Double Interp Protocol

Protocol sets signhal samples to -1 or 1 except for
transitions

= Transition values between -1 and 1 are directly related to
the edge time location

= Can be implemented in C++, Verilog, and Matlab/Simulink



VCO is a Key Block for Double_Interp Encoding

v[n]

Filter

ref[n] e[n]

Pump

ChargeH Loop |,

T

out[n]
_>

VCO

divin] T I Divider |<

(Assume VCO output

Nsa[n] A ‘ N[n] | is a square-wave
\MOdUWOf for this discussion)

" The VCO block is the key translator from a bandlimited
analog input to an edge-based waveform

" We can create routines in the VCO that calculate
the edge times of the output and encode their
values using the double_interp protocol

26



Calculation of Transition Time Values

out[n] H €k IIIHIH .

v[n] out[n]
—>

" Model VCO based on its phase

27



Calculation of Transition Time Values (cont.)

" Determine output transition time according to phase

28



Calculation of Transition Time Values (cont.)

" Use first order interpolation to determine transition value

29



Processing of Edges using Double Interp Protocol

a _ pa
ref[n] e[n] Charge Loop v[n] out[n]
PFD Pump F|Iter
div[n]
3 1 I I Divider |<

Nsq[n] 2—A N[n]
\Modulattv;l_T

" Frequency divider block simply passes a sub-
sampling of edges based on the VCO output and
divide value

30



Processing of Edges using Double Interp Protocol

] out[n]
Charge Loop
Pump Fllter

D|V|der

:
Nsq[n] \ N[n]
Modulatj;l_T

" Phase Detector compares edges times between
reference and divided output and then outputs pulses
that preserve the time differences

31



Processing of Edges using Double Interp Protocol

ref{n] 11} Illl\mmmmnniﬂmﬂqﬂlﬂ
I||||||| out[n]
Charge Loop
Pump Filter ®—
[ 1) t.......

3 ] D|V|der

Nsa[N] \ N[n]
Modulator

" Charge Pump and Loop filter operation is
straightforward to model

" Simply filter pulses from phase detector as
discussed earlier

PFD

div[n]

32



Using the Double_Interp Protocol with Digital Gates

R

clk =—

clk[n] 4111 1, alnl 11, o111 .
out[n] Hﬁ ﬁ,[ N b[n] N
out[n] _ ITIIIIIT . out[n] 11y mi 0

" Relevant timing information contained in the input
that causes the output to transition

= Determine which input causes the transition, then pass
Its transition value to the output

» OUt A —p
out b—

out

O
Ol O

33



Using the Double Interp Protocol with Sine Waves

osc_out[k] Conversion
—_ Module
%

osc_out[k] ‘ ‘ ‘ ‘ ‘ ‘ ‘ double

1

1 X X ( X X | ® [ X )
osc_buf[k] ° T ®
PR SR YL Y § 3 SR § § S
" |n some systems we must deal directly with sine waves

= An explicit conversion module should be utilized

= \We can convert to double _interp protocol using a similar
Interpolation technique as described earlier

= See gmsk_limitamp module within GMSK_Example library
» Used in module gmsk_pll_transmitter in the same library

osc_buf[k]

double_interp

34



Summary of Block-by-Block Computation Method

1-»@-»3—»4 ol 6 b

L

" Requires unilateral flow through blocks

" |Impacts phase margin of feedback loops
= Need 1/T, >> bandwidth of feedback loop
= Need proper ordering of blocks (automatic in CppSim)
" Constant time step simplifies simulation
= Easier block descriptions
= Frequency domain analysis become straightforward
= Time-based signals handled with double _interp protocol

What is the best programming language for this approach?




Verilog Versus C++ for Block-by-Block Simulation

Verilog

" Excellent language for
digital modeling and
verification

" Time consuming to
Implement analog
modeling

C++

" Excellent language for

analog modeling

= Object oriented

= Signal processing
Time consuming to
Implement digital
modeling

= SystemC?

B Best choice in cases
where blocks have
sparse transition activity

Best choice in cases
where blocks require
continual update every
time step

36



An Approach That Seems to Work Well

High Level
Investigation &
Analysis

Schematic Creation

Extracted Layout
Creation

PVT Corners
Monte Carlo

System Level Verilo
Test Vectors g

C++ [System Design
Architecture

Circuit Design
Analog

Circuit
Verification
Analog

System
Verification
Circ. & Arch.

Circuit Design
Digital

Circuit
Verification
Digital

Code Creation
Place & Route

Digital Test Vectors
Timing Checks



How Do We Make This Approach Efficient?

High Level
Investigation &
Analysis

Circuit Design
Analog

Circuit
Verification
Analog

System Level System

Test Vectors

Verification
Circ. & Arch.

Circuit Design
Digital

Circuit
Verification
Digital

Would like to
Incorporate Verilog
models into C++
= Provides accurate
models for digital

processing and
control

Would like to
Incorporate C++
models into Verilog

= Allows re-use of
critical block
models

= Provides C++ for
complex test
vector generation
38



CppSim and VppSim Offer C++/Verilog Co-Simulation

" CppSim
= C++is the simulation engine
= Verilog code translated into C++ classes using Verilator

= Best option when system simulation focuses on analog
performance with digital support

" VppSim
= Verilog is the simulation engine
= C++ blocks accessed through the Verilog PLI

= Best option when system simulation focuses on digital
verification with C++ stimulus

Constant time step approach allows seamless
connection between C++ and Verilog models

39



Free Download at www.cppsim.com

{ | Cppsim Systern Simulator
&« — C @& O wwwcppsimcom
[*] Gmail @ libssh - The 55H Libr... [B3 IT++: installation I';Z' CppSim System Sim...

Download About Manuals Tutorials

"Designing precision timing
circuifs that exhibit grossly
non-linear behavior requires
performing accurate
simulations in the fime
domain. Such simulafions
fake prohibitively long, even
in cornmercial behauioral
imulators, which have
ften limited our ability to
evaluate new PLL, CDR, and
eciures in the
Sim and its
compatibility have
void and have been

Home Download About Manuals Tutorials Publications Lectures

Discover a faster and easier way to
perform system level simulation of
complex mixed-signal circuits.

Publications Lectures

CppSim automatically generates, compiles, and runs C++ code
corresponding to the schematic design that you create.

@ Graphical Interface:
Systems are specified and simulated within a schematic editor, Sue2, and results are
viewed using a waveform viewer (CppSimView or GTKWave).

@ Analog modules:
# A simple text template for each module is filled in by the user which can make use of a
rich set of C++ classes to represent common functions such as filtering, noise, efc.

@ Digital modules:
# CppSim utilizes Verilator to automatically create C++ code corresonding to your Verilog
modules, and seamlessly integrates this code info your system simulation.

40



Screenshot of CppSim/VppSim (Windows Version)

 SUE2: sd_synth_fast {schematic) --- C:/CppSim/SueZ... @@

Eile Window Edit Sim |

SUMm_junct =7 1 SUMm_jundct div sineout
wiT . wifi (_ -
-} CppSimView --- Library: CppExamples, Cell: sd_synth_fast

Save to File  Save to Clipboard  Zoom

O testpar O testirl

Sued Sunch

=imulated Signals for Cell: sd_synth_fast, Lib: CppExamples, Sir

.................................................

100 200 300 400

.................................................

100 200 200 400

TIME

Run CppSim out

ref

win

afclout

Edit Sim File sd_in
div_wal

=12 _«or_out

E dit modules. par

Reset Made List

141

Back | Fu:urwaru:l|

1aa 200 a00 400
Time [microseconds)

| platsigix, 'sd_inxvinptdout’)

CppSim: A C++ Behavioral Simulator

‘Wiitten by bMichael Ferrott (hitp:ffwearae-rmtl. mit edud™ perrott)

Readily Interfaces with Matlab and GTKWave

41



Screenshot of CppSim/VppSim (Cadence Version)

Virtuoso® Schematic Editing: Synthesizer_Examples sd_synth_fast schematic
Cmd: Sel: 0

Tools Design Window Edit Add Check Sheet Options
Editor...
Display...
Select Filter...
Check...

€ [

@2 Check Rules Setup...

2 Tool Filter-..

e 2 Save Defaults...

=

N Load Defaults...

Y - - nscciciiinaana.,,

Dlt"-.
s n

mouse L: schSingleSelectPt() M: schHiMousePopUp ()

in Close | Kill Run| Synchronize | Edit 3im File| Netlist Only | Compile/Run
J""‘ Mode: AMS with Vpp3im modules Vpp3im 4 Cpp3im

EI T

A

o Sim file: lest.par

Ij Result: [

=

Interfaces with Matlab,
GTKWave, and SimVision




A Closer Look at CppSim/VppSim Methodology

s : ,,/' gppSi_mt_Module " Schematic
] v escription _
"_’: >$R—C'+1/: Name = Provides
. - @1* Inputs, Outputs hierarchical
! >R -1 - Parameters d T :
:F l | " Code escription o
N system
' topolo
—|Ghargely Lo > PO
P " Code blocks
.. "=~ = Specif
Divider ———— P Y
S~ module
E '\ | SppSim Module behavior
v Description i
' using
e |\ Inputs, Outputs templated C++
erilog Module '\ Parameters
Description \ Code code or

Verilog code
" Designers graphically develop system based on a
library of C++/Verilog symbols and code

= Easy to create new symbols with accompanying code

43



CppSim Automates C++ Class Generation

,’I CppSim Module
’ Description

a Name
3_6- @\"" Inputs, Outputs
—I ‘< Parameters
‘ 1- 2 ; “~_ Code

1 T
-_—
:J
\
PN P N,
\

g 4

. ’ Inputs, Outputs

Verilog Module Parameters
Code

Description

\  CppSim Module
'. Description
\
1+  Name
\
\
\
\

" Modules are identified from schematic and then
= CppSim modules are converted into C++ classes

= Verilog modules are translated into C++ classes using Verilator

C++ Class for
Module 1

C++ Class for
Module 2

C++ Class for
Module 3

C++ Class for
Submodule 1

C++ Class for
Submodule 2

C++ Class for
Submodule 3

C++ Class for
Submodule 4

C++ Class for
Module 4

C++ Class for
Module 5

C++ Class for
Module 6

44



CppSim Assembles C++ Classes into Overall Sim Code

:'-1: -------- \: f' C++ Class for

e 1 ‘.,.v : Module 1
|

! $—@ @1—' C++ Class for

| -4 Module 2
[42 '

e ;,, C++ Class for
= Module 3

4 H > — — C++ Class for

Submodule 1

< C++ Class for

Submodule 2

< C++ Class for
C++ Class for Top Module Submodule 3

---------------- C++ Class for
Module 1 Submodule 4

. B
Module 2 Submodule 1
¥ 8
Module 3 Subm‘odule 2
Module 4 Submodule 3

" Block-by-block
execution of each
module at each

C++ Class for
Module 4

time Step I i1 C++ Class for
i ) Module 5 Submodule 4 Module 5
®" Hierarchical I}
} ; ) Module 6 C++ Class for
description is N , \_ Module 6

retained



C++ Code Is Easily Embedded In Other Simulators

Seamless Verilog Support

|

:

: Verilog PLI Code
| PLI Header Code

i PLI to C++ Signal Conversion
|

|

|

|

|

|

|

. g
Call C++ Top Module

(for one time step)

Gar av av o> v av Ed Ed Ed > Ed E> @ @ @ @ o

C++ to PLI Signal Conversion

’

| |
| |
| |
! Matlab Mex Code :
| Mex Header Code :
| Mexto C++ Signal Conversion :
| |
| 8 |
| |
| |
| |
| |
| |
'\ ;

Call C++ Top Module
(for many time steps)
£

C++ to Mex Signal Conversion

’---------

Fast C++ Simulation
CppSim Code

Loop
Call C++ Top Module

p B
Record Probed Signal Values

.

If (Final Simulation Sample)

Break

61

C++ Class for Top Module

g

Module 1
. B
Module 2
. B
Module 3
Module 4
. B
Module 5
. B
Module 6

Submodule 1
Subrr%)dule 2
. 3
Submodule 3
.
Submodule 4

-—eer e ar ar e e e er En e o > o o P

~

/
war o or o ov v o0 v Ed E» > @ o o> o o i

f

C++ Class for
Module 1

C++ Class for
Module 2

C++ Class for
Module 3

C++ Class for
Submodule 1

C++ Class for
Submodule 2

C++ Class for
Submodule 3

C++ Class for
Submodule 4

C++ Class for
Module 4

C++ Class for
Module 5

C++ Class for
Module 6

46



VppSim Example: Embed CppSim Module in NCVerilog

CppSim module

module: leadlagfilter
parameters: double fz, double fp,
double gain

inputs: doublein

outputs: double out

static_variables:

classes: Filter filt("1+1/(2*pi*fz)s",
"C3*s + C3/(2*pi*fp)*s"2",
"C3,fz,fp,Ts",1/gain,fz,fp,Ts);

Init:

code:
filt.inp(in);
out = filt.out;

Resulting Verilog module

/Il Auto-generated from CppSim module //lll]
module leadlagfilter(in, out);

parameter fz = 0.00000000e+00;
parameter fp = 0.00000000e+00;
parameter gain = 0.00000000e+00;
input in;

output out;

wreal in;
real in_rv;
wreal out;
real out_rv;

assign out = out_rv;
initial begin
assignin_rv =in;

end

always begin
#1

$leadlagfilter_cpp(in_rv,out_rv,fz,fp,gain);

end

endmodule

47



Many Tutorials Available for CppSim/VppSim

" Wideband Digital fractional-N frequency synthesizer
" VCO-based Analog-to-Digital Convertor

" GMSK modulator

" Decision Feedback Equalization

" Optical-Electrical Downversion and Digitization

" OFDM Transceiver

" C++/Verilog Co-Simulation

) Sce http://www.cppsim.com

48



Example Benchmarks for a Full Chip Simulation

Tabulated simulation times for a MEMS-based oscillator:

" SPICE-level model
= Checking of floating gate, over-voltage,
startup of bandgap and regulators, etc.
= Spectre Turbo: 2 microseconds/day
= BDA: 8 microseconds/day
" Architectural model using CppSim
= Examination of noise and analog dynamics
» 2.8 milliseconds/hour
" Verification model using VppSim

= Validation of digital functionality in the context of analog
control and hybrid digital/analog systems

= 7 milliseconds/minute

49



Analog Modeling in CppSim



Building an Analog Model in CppSim

Vin(t) Ri 3»3» Vout(t)
M%‘“ I
®

Filter filt_sig(num(s),den(s),...)

vout = filt_sig.inp(vin)

Vin(t Vout(t
inf®) Heig(S) ut(®

" Example: use Filter class
= Specify with ‘s’ polynomials of numerator and denominator
= Run by using inp() function of object to update output

Transfer function calculation is tedious, but simulation iIs fast

51



Adding Noise to the Model

Vv \"A
Vin(t) ™ Ry 2 R Vout(t)

IC1 =

Rand noise1(“gauss”) 2 2

Vn1 Vn2
Rand noise2(“gauss”) J ¥
E Hn1(s) ‘ HnZ(S) ‘
vn1 = scale1+noise1.inp() Vin(t) \ Vout(t)
vn2 = scale2.noise2.inp() Hsig(s) b

" Easy to create Noise objects
= Specify with distribution (i.e., “gauss” for Gaussian)
= Run by using inp() function of object to update output

"= A bit painful to derive all of the transfer functions...



More Complicated Circuits

ph1(t) ph2(t)

" Switched capacitor circuits are common in filters, ADCs

= Capacitor network with switches can be modeled with
unilateral flow blocks, but many practical issues:

= Very challenging for beginners, tedious for experts
= Difficult to check correctness of model
= Difficult to investigate alternative architectures

We need a way to automate the modeling process...

53



Automatic Model Generation

ph1(t) ph2(t)
ph2

C
| |
vin1 —l vout !
L v v I_> T— vin2
Vin(t) - -—/L - Vot
Ci== Viet —t .

vin2
ph1(t) — ph1
ph2(t) — ph2

Vin(t)—vin1  vout -
" Vout(t)
Vref —t

" Alinear network with switches can be represented as a
state-space model with switch dependent matrices

= An equivalent unilateral flow block is created

54



CppSim Approach to Linear Networks with Switches

ph1(t) ph2(t)

v \ 4 |
. /o -
Vin(t) Vout(t) auto-generated
Ci== Vet —+ CppSim model

7

. vin2
electrical _element:

: : ph1(t) — ph1
electrical_switch ... ph2(t) — ph2

Vis(t) —vin1  vout [——
" Vout(t)
Vref —t

" User specifies the CppSim model for linear elements,
switches, and diodes using electrical _element: command

= Draw the schematic and CppSim takes care of the rest!

electrical_element:
capacitor ...




Transient Noise Analysis is Supported

ph1(t) ph2(t) :
electrical_element:

capacitor ...

- V() auto-generated
Ci== Vet —+ CppSim model

. vin2
electrical_element:

: : ph1(t) — ph1
electrical_switch ... ph2(t) — ph2

... hoise_enable = 1 Vin(t) —vin1  vout |-
Vout(t)
Viet £

" Resistors, switches, voltage/current thermal + 1/f noise
" For kT/C noise, need adequately small time step, T,
= Accuracy requires 1/T, > 20*bandwidth of switch settling time

56



Supported Electrical Elements in CppSim

resistor capacitor inductor electrical_transformer mutual_inductors
oo oo
— ‘ 11 H 12
: ~—
1:n -
VCCS CCCS VCVS CCVS ccvs_single_out
L ] 1
+ +
A 4 \ 4 \ 4
—1 — 1 —
electrical_diode electrical_switch dc_voltage dc_current

P s

dc_voltage with_noise  dc_voltage with_noise_sq dc_current with_noise  dc_current_with_noise sq

g e_n 9 e_n2 — 2
9 9 In In




CppSim Code Versus Electrical Element Modules

ph1(t) ph2(t)

code: electrical_element:
------------------------------------ \Y;
Filter filt1(“K”,“1+1/wo*s”,... — —p— 1O
vout = fiIt1(vinp-vinm) ' Vi==Cin gmV1 §ro Co
V.. = :

------------------------------------

" Which approach is best for circuit blocks such as opamps?

58



Complexity Issue with Electrical Element Modules

ph1(t) ph2(t) ph1(t) ph2(t)
Co, Cy
\ 4 \ 4 \ 4 \ 4
Vinlt) —L g4I ARSI
Ci—== Viet — £ Voutlt) Ciz=—= Viet — £ Vouta(t)

electrical _element:

------------------------------------

State-space calculations increase as (humber of elements)?

= Large networks dramatically slow down simulation speed o



Code Modules Allow De-Coupling Between Networks

ph1(t) ph2(t) ph1(t) ph2(t)
C, Cy
\ 4 \ 4 \ 4 \ 4
Vin(t) o e SR A W
C1 — Vref i + Vout(t) C3 — Vref = + VoutZ(t)

code:
Filter filt1(“K”,“1+1/wo*s”,...)

vout = filt1 (\./inp-vinm)

" Code modules are not sensitive to loading
= Allows CppSim to automatically separate into sub-networks

Code modules preferred to achieve fast simulation speed




Impact of Hierarchy on Electrical Element Networks

Instance 1 Instance 2

unity gain
voltage

RS, Vout(t)
> %®‘g\—> >—%@&,,,\->—

Linear Network Linear Network

" CppSim implicitly inserts unity gain voltage buffers at
all inputs and outputs of instances

= Allows hierarchical simulation structure of overall
system to be retained

= De-couples networks at instance level to discourage
creation of large state-space models

61



Example: A Second Order RC Network

Vin(t) R1 R> Vout(t)

" Resulting transfer function is NOT simply the cascade
of two identical RC filters

= Actual pole locations are influenced by mutual coupling
of the two first-order RC networks

62



Cascade of First Order RC Networks as Instances

Instance 1 Instance 2

Vin(t) R1 R2 Vout(t)

" This would appear to be the same as cascading the
RC networks at the same level of hierarchy...

63



Recall Unity Gain Voltage Buffer Insertion

Vin(t)

Instance 1

unity gain

voltage

buffer

Instance 2

>VM«—0

>

—— C;

>Ww—l—

C2

Vout(t)

" CppSim implicitly adds unity gain voltage buffers

= Resulting transfer function is actually the cascade of
two identical RC filters

How do you achieve network coupling with hierarchy?

64



Electrical Element Modules Form Coupled Networks

Instance 1 Instance 2
electrical_element: electrical _element:
Vin(t) resistor ... | resistor... l’”t(t)
capacitor ... capacitor ...

CppSim allows one level of hierarchy for coupled networks

65



Time Based Signals with Electrical Elements

Vin(t) /o—"— -
Vout(t)
C1 Viet — £

ph1(t)

" Constant time step of CppSim could lead to
guantization effects on sample times of clock edges

= Would result in sampling errors of input waveform

66



Leverage Double Interp Protocol

ph1(t)  ph2(t) C,

~_ ||

in @ @ -—
Vout(t)
C1 Viet — £

ph1(t)

ph1[K]

11T Lt 1t I1¢
R Y Y SRS Y Y R § S LI §

" Electrical switches within CppSim require double_interp
signals for the control nodes

= Good timing accuracy achieved despite constant time step

67



Summary of Analog Modeling in CppSim

CppSim Code Modules

" Require unilateral flow but allow arbitrary analog
functions including nonlinearity, filtering, hysteresis, etc.

Electrical Element Modules

" Enable straightforward modeling of linear networks with
switches and diodes

= User simply creates schematic level representation

= State-space model of network automatically created
" Fast speed retained by keeping network sizes small

= De-coupled networks are automatically separated

= Instances are decoupled unless they are electrical elements
" High accuracy retained for time-based circuits

= Constant time step allows straightforward FFT analysis

= Double interp protocol enforced for electrical switches

68



Digital Modeling in CppSim



Code Modules: CppSim or Synthesizable Verilog

xi10

a<2:0> y<50>
b<4:0> CppSim _10:)
' Module r<10:0>

clk S
xi10 5.0
a<2:0> y<5:0>
b<4:0> Synthesizable —>
clk . Verilog Module | r<10:0>
—»D —

module: dig_mod
inputs:
bool a[2:0], bool b[4:0], bool clk
outputs:
bool y[5:0], bool r[10:0]
([

module dig_mod(a, b, clk, y, r);
input [2:0] a;
input [4:0] b;
input clk;
output [5:0] y;
output [10:0] r;
[

" CppSim modules utilize bool signals
= Correspond to integer vectors whose elements are O or 1

" Verilog modules must be synthesizable in CppSim

= Note: full support of Verilog in VppSim

70



Getting and Setting Boolean Signal Values (CppSim)

xi10

a<2:0>

b<4:0>|

clk

—>

y<5:0>
CppSim g
r<10:0>
S Module

a_dec = a.get_decimal_value();
b _dec = b.get decimal value(3,1); // limited bit range (b[3:1])
b_bit1 = b.get_elem(1);

y.set_decimal_value(15);
r.set_decimal_value(21,7,2);
r.set_elem(8,1);

module: dig_mod
inputs:
bool a[2:0], bool b[4:0], bool clk
outputs:
bool y[5:0], bool r[10:0]
[ J

// full bit range (a[2:0])

/Il get b[1]

// full bit range (y[5:0] = 15)

/ limited bit range (r[7:2] = 21)
/] set r[8] =1

Bool signals: integer vectors with element values of O or 1

= Support functions such as get_elem(), set_elem(), etc.

= For convenience: get _decimal value(), set _decimal value()
» Restricted to 32-bit values

71



Implementing Clock Edge Based Processing

xi10 £ module: dig_mod
a<2:0>| y<3o:U> | inputs:
b<4:0> CppSim ' bool a[2:0], bool b[4:0], bool clk
_>C|k Module r<10:0>| outputs:
—»D > | bool y[5:0], bool r[10:0]

EdgeDetect pos_clk _edge()
EdgeDetect neg_clk_edge() timing_sensitivity: posedge clk

code: code:
if (pos_clk_edge.inp(clk))
{

}
if (neg_clk_edge.inp(-clk))

{

}
" timing_sensitivity: clk must be of type bool

" EdgeDetect: clk must be of type double _interp

72



EdgeDetect() versus timing_sensitivity: for VppSim

EdgeDetect (simplified) timing sensitivity:
/Il Auto-generated from CppSim module ////// Illll Auto-generated from CppSim module ////1/
module dig_mod(a,b,clk,y,r); module dig_mod(a,b,clk,y,r);
always begin always@(posedge clk) begin
#1 $dig_mod_cpp(a,b,clk,y,r);
$dig_mod_cpp(a,b,clk,y,r); end
end
endmodule endmodule
" PLIroutine is called " PLIroutineis only called
every time step on positive clk edges
= Dramatically slows = Much less impact on
down VppSim! simulation speed

Use timing_sensitivity: unless you need to perform
computation during every time step
(Note: no penalty for EdgeDetect method in CppSim)

73



Buses, Bundles, and lterated Instances

Xi1<2:0>
<<t <205
a<&D—>

" Basic conventions supported

= lterated instance: xi1<2:0>

= Bus: a<2:0>

= Bundle: a<l1>,b<1:0>
" Key rules for bused signals:

= Code modules: buses only valid for type bool

= Exception for electrical _element: modules:

» Declare as bool, but actual type becomes double
= Schematic signals: buses can be any type

74



VppSim Example: Using Buses in CppSim Module

CppSim module

module: queue2
parameters: int bit_width
inputs: double_interp clk,
double rst_n,
bool in[2047:0],
int enqueue,
bool dequeue[31:0]
outputs: bool out[2047:0],
bool not_empty[31:0],
int not_full

Resulting Verilog module

T Auto-generated from CppSim module /TN
module queue2(clk, rst_n, in, enqueue,

dequeue, out, not_empty,

not_full);

parameter bit_width = 0;
input clk;

input rst_n;

input [2047:0] in;

input [31:0] enqueue;
input [31:0] dequeue;
output [2047:0] out;
output [31:0] not_empty;
output [31:0] not_full;

wreal clk;
real clk_rv;
wreal rst_n;
real rst_n_rv;

75



double_interp osc1

/_b(){“n
clk_gen dig_mod
-
= JTHTHEITHAT
osc1[k]_1lT t“l' T T'lll* T“

Feeding Bool Input with Double Interp Signal

double_interp

in[k]; 1A M 11 111 bool

" Conversion module automatically inserted

= -1,1 signaling converted to 0,1 signaling
= High resolution edge timing information is lost

76



Feeding Double Interp Input with Bool Signal

double_interp osc1 double_interp ph1
bool in bool buf1
X K ph2 Co,
NG |
clk_gen dig_mod v l ‘ |l
— Vin(t) —"—¢—"—o— -
- “T Vi Voul®)
, , +> S« | T
ose10 M HH‘ il ‘ ‘HH‘ W
CRERRRRCRARRRRC R
1 [ X (| X ® | X
osc1[K] t TQ T

1l

buf[K] (1“ 11

390N

1

000

double_interp
1§

bool

ph1lK
14

Wil

Wil UL

double _interp
1§

" Automatic translation of 0,1 signaling to -1,1 signaling

= Loss of timing information causes quantization noise!

77



Summary of Digital Modeling

" Verilog or CppSim code modules are supported

= CppSim simulator: Verilog must be synthesizable code

= VppSim simulator: Verilog is fully supported
® Key constructs for CppSim modules:

= bool signal type allows bus notation

= timing_sensitivity: advantageous for VppSim simulator
" Buses, bundles, and iterated instances supported
" Care should be taken to avoid introducing timing

guantization noise

= Conversion of double interp signals to type bool leads
to loss of high resolution timing information of edges

/8



Final Points

" CppSim is designed for high productivity and versatility
= Easy to create your own code blocks

= Use existing modules to see examples, but don’t limit
yourself to what is available

= Allows very detailed modeling of complex circuits
= You are not confined to an overly simplified model
= Invites a scripted approach to running simulations
= Excellent integration with Matlab/Octave
= Flexible output storage for Matlab or GTKwave
= Runs in Windows, Mac OS X, or within Cadence
= Has been used to simulate entire ICs in Cadence
" Extensive 10 year track record of enabling new circuit
architectures with first chip success
= Top schools and industry professionals use it

79



