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ABSTRACT
Techniques for fast and accurate simulation of fractional-
N synthesizers at a detailed behavioral level are presented.
The techniques allow a uniform time step to be used for the
simulator, and can be applied to a variety of phase locked
loop (PLL) and delay locked loop (DLL) circuits beyond
fractional-N synthesizers, as well as to a variety of simulation
frameworks such as Verilog and Matlab. Implementation
in code, as well as simulated results, are presented using
a custom C++ simulator, and compared to calculated and
measured results from a prototype fractional-N synthesizer
using a Σ-∆ modulator to dither its divide value.

1. INTRODUCTION
Fractional-N frequency synthesizers provide high speed

frequency sources that can be accurately set with very high
resolution, which is of high value to many communication
systems. Figure 1 illustrates a fractional-N synthesizer, which
consists of a phase-frequency detector (PFD), charge pump,
loop filter, voltage controlled oscillator (VCO), and a fre-
quency divider that is dithered between integer values to
achieve fractional divide ratios. As the figure reveals, this
paper will focus on a class of fractional-N synthesizers known
as Σ-∆ frequency synthesizers [11], for which the divide
value is dithered according to the output of a Σ-∆ mod-
ulator [7].

Dithering of the divide value by the Σ-∆ modulator al-
lows high frequency resolution to be achieved [11], but also
has the negative side effect of introducing quantization noise
that degrades the overall PLL noise performance. It is
highly desirable to be able to simulate the effects of this
quantization noise, along with other noise sources in the
PLL shown in Figure 2, on the overall PLL performance.
It is also desirable to simulate the dynamic response of the
synthesizer in response to variations of the Σ-∆ input in or-
der to evaluate stability and characterize the performance
of the system when it is used as a transmitter [9].

Simulation of fractional-N synthesizers is particularly chal-
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Figure 1: Σ-∆ synthesizer and associated signals.
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Figure 2: Spectral densities of PLL noise sources.

lenging for a variety of reasons. First, the high output fre-
quency of the synthesizer (often in the GHz range) imposes a
high simulation sample frequency for traditional simulators.
Unfortunately, the overall PLL dynamics have a bandwidth
that is typically three to four orders of magnitude lower
in frequency than the output frequency (often 100 kHz to
1 MHz bandwidth compared to a GHz output frequency).
Thus, traditional simulators take a long time to compute
the dynamic response of the system since many simulation
samples are required, which is the classical problem that
is encountered with the simulation of PLL circuits. For
noise simulation, the fractional-N synthesizer adds the addi-
tional constraint that its behavior is non-periodic in steady-
state due to the dithering action of the divide value, which
prevents the use of methods developed for periodic steady-



state conditions [6] as used with simulators such as Spectr-
eRF. Thus far, the author is aware of no simulation tools
that allow accurate simulation of the noise performance of
fractional-N frequency synthesizers.

In contrast to the above approaches, two techniques are
presented in this paper that allow fast and accurate simula-
tion of both dynamic and noise performance of fractional-N
synthesizers at a detailed behavioral level. The first pro-
vides accurate representation of the continuous-time (CT)
PFD output with a discrete-time (DT) sequence using an
area conservation principle. The second allows a dramatic
reduction of the simulation sample frequency, and therefore
a longer sample period, by including the divider implemen-
tation in the VCO simulation module. Both of these meth-
ods allow a uniform time sample period to be used, and also
allow non-iterative computation of the sample values of the
various signals within the system. The uniform time sample
period allows the results of the simulator to be readily exam-
ined in the frequency domain without resampling, and the
non-iterative computation allows the technique to be eas-
ily used in mainstream simulators such as Verilog, VHDL,
Matlab, and custom C/C++ programs.

An outline of the paper is as follows. Section 2 provides an
overview of the discretization technique for representation of
the CT PFD output with a DT sequence, and presents the
corresponding mathematical analysis. Section 3 describes,
at a high level, how the discretization technique can be im-
plemented with the PFD described in terms of basic build-
ing blocks such as registers and logic gates — this allows
the designer to easily use the approach for a variety of PFD
topologies. Section 4 focuses on the method of dramatically
reducing the required simulation sample rate by combining
the VCO and divider functions into one simulation block.
Section 5 provides example code for a Σ-∆ synthesizer us-
ing a custom C++ simulator and compares the simulated
noise performance to calculated and measured results of an
actual circuit implementation described in [9]. Finally, Sec-
tion 6 concludes.

2. PFD DISCRETIZATION TECHNIQUE
For simulation based on uniform time sampling, a straight-

forward approach of converting the CT PFD output to a DT
sequence is to apply a simple sampling operation as shown in
Figure 3. Unfortunately, this approach effectively quantizes
the location of the PFD edges according to the simulation
sample period, Ts. A reasonable assessment of the dynamic
performance of the PLL can be achieved if Ts is made suf-
ficiently small. However, the resulting quantization noise
overpowers the true noise characteristics of the signals, and
prevents proper noise analysis of the overall PLL.
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n
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Figure 3: Classical uniform time sample method.

To solve the quantization noise issue, event-driven simu-
lation methods have been developed for classical frequency
synthesizers that align simulation samples precisely to the
edges of the PFD output [2, 5, 1]. Although higher accuracy
can be achieved with such methods, they are generally more
complicated than uniform time sampling methods. Either
closed-form calculation of the loop filter step response must
be developed and then inserted into the simulation, or it-
erative methods, as used in SPICE or Verilog-A, must be
incorporated into the simulator to calculate the loop filter
response with varying time steps. The former approach is
tedious and typically restricted to a low loop filter order, so
that most of the recent methods focus on the latter approach
[2, 5, 1]. In this case, the up-front work of the designer is
minimized, but the simulation time is often longer due to
the iterative calculations that are performed at each time
step. Unfortunately, for either case, event-driven simulators
have not yet been applied successfully to the noise analysis
of fractional-N frequency synthesizers in which the divide
value is dynamically varied.

In contrast to the above approaches, a constant time step
method is proposed in this paper that applies an area con-
servation principle when converting the CT PFD output to
the DT domain. This approach allows non-iterative com-
putation of the loop filter dynamics by allowing them to be
converted from CT to DT using either impulse invariance
or bilinear transform methods [8]. Figure 4 illustrates an
example of the resulting DT PFD signal, along with the
corresponding DT loop filter impulse response. The charge
pump is ignored in this analysis for simplicity; its effect can
be included by simply scaling the PFD output by the value
of the charge pump current. In the example, we see that the
DT PFD output takes on values at its transitions that vary
between 0 and 1 depending on the location of the transition
edge. The DT version of the loop filter simply consists of a
DT filter whose impulse response corresponds to samples of
the CT impulse response of the loop filter, h(t).
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Figure 4: Proposed discretization method.

The discretization procedure is now discussed in more de-
tail. As illustrated by Figure 5, we can view the CT PFD
output, e(t), as a series of rectangular pulses with height of
one or zero and a width and time offset that varies accord-
ing to the location of PFD edges. For rectangular pulses not
associated with edges, the width corresponds to the sample
period of the simulation, Ts. For rectangular pulses at edge
boundaries, the width of the pulse varies between 0 and Ts

as shown in the figure. In either case, these pulses look like
impulses to the loop filter so that, from an intuitive stand-
point, their influence can be characterized by two parame-



ters — their area and time offset. Therefore, in line with
this intuition, the corresponding discrete-time PFD signal,
e[n], is chosen as samples that have amplitude proportional
to the area of the respective rectangular pulse in that time
sample interval. The area of each pulse corresponds to its
associated timing parameter ε shown in the figure — the
method of calculating ε for each pulse will be discussed in
Section 4. It will be shown that the proposed discretization
procedure yields highly accurate results, fast computation,
and a simple implementation framework.
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Figure 5: Details of PFD discretization technique.

To mathematically justify the technique, let us begin by
specifying a notation for the rectangular pulses composing
e(t) that are shown in Figure 5, namely

rect(t, εk) = 1 for − εk/2 ≤ t ≤ εk/2, 0 elsewhere.

Given the above notation, we can describe the loop filter
output as

v(t) =
∞∑

k=−∞
rect(t − kTs − ∆tk, εk) ∗ h(t), (1)

where ∗ denotes convolution, and εk and ∆tk are constrained
to 0 ≤ εk ≤ Ts and −Ts < ∆tk < 0.

Taking the Fourier Transform of both sides of Equation 1,
we obtain

V (jw) =
∞∑

k=−∞
e−jw(kTs+∆tk) 2 sin((εk/2)w)

w
H(jw), (2)

where H(jw) is the loop filter frequency response.
One might be bothered that the Fourier Transform is

being taken with sequences that are stochastic in nature,
namely εk and ∆tk. This step is justified by noting that
these sequences will be defined for a specific simulation run,
and have finite duration (i.e., εk = 0 for |k| > P , where
the number of simulation samples is 2P + 1). Given these
conditions, Equation 2 will be valid, though we cannot in-
fer statistical properties from its formulation or the analysis
that follows.

Equation 2 can be simplified in light of the following as-
sumptions:

• H(jw) is a lowpass filter such that |H(jw)| ≈ 0 for
|w| > wo,

• The sample period, Ts, is much smaller than the time
constant of |H(jw)|, so that woTs � 1. Since |εk| <
Ts, we have sin((εk/2)wo) ≈ (εk/2)wo.

The second assumption is well justified in practice since it
is typical for woTs � 1/100. For instance, the author rec-
ommends sampling at a rate that is greater than a factor
of 10 above the reference frequency, which is, in turn, at
least a factor of 10 higher in frequency than the loop filter
bandwidth in Hz, fo, to achieve stable PLL dynamics [10].
In this case, foTs < 1/100, so that woTs < 1/(2π100).

Based on the above assumptions, Equation 2 is approxi-
mated as

V (jw) ≈
∞∑

k=−∞
εke−jw(kTs+∆tk)H(jw).

The inverse Fourier Transform of the above expression is

v(t) =
∞∑

k=−∞
εkh(t − kTs − ∆tk). (3)

We are now ready to develop the discrete-time model of
the PFD/loop filter section that we are seeking. We begin
by sampling Equation 3:

v(nTs) =
∞∑

k=−∞
εkh((n − k)Ts − ∆tk). (4)

The above formulation requires nonconsistent sampling of
h(t) due to the inclusion of ∆tk — it is preferable to remove
this parameter if it can be shown that its influence is neg-
ligible. We will examine this issue using a specific form for
h(t), and then comment on the extension of the analysis for
more general forms of h(t).

Let us assume that the loop filter corresponds to a lead/lag
network with transfer function of the form:

H(jw) = K
jw + wz

jw(jw + wo)
.

Using the method of partial fractions [8], it is straightfor-
ward to show that the corresponding loop filter impulse re-
sponse is of the form

h(t) = K1e
−wotu(t) + K2u(t) = (K1e

−wot + K2)u(t),

where u(t) is the unit step (0 for t < 0, 1 for t ≥ 0), and
K1 and K2 are constant scale factors. Plugging the above
expression into Equation 4, we obtain

v(nTs) =
∞∑

k=−∞
εk(K1e

−wo((n−k)Ts−∆tk)+K2)u((n−k)Ts−∆tk).

(5)
We note that:

u((n − k)Ts − ∆tk) = u((n − k)Ts)
since − Ts < ∆tk < 0,

and

e−wo((n−k)Ts−∆tk) = ewo∆tke−wo(n−k)Ts

≈ (1 + wo∆tk)e−wo(n−k)Ts .

Therefore, the effect of the time shift operation by ∆tk

has no influence on samples of u(t), and only slightly mod-
ulates the amplitude of samples of the exponential response
e−wot. Although its effect could be incorporated into the
numerical model, the author has found that it can be safely
ignored given that two conditions are met. The first condi-
tion is that woTs be much less than 1 so that 1+wo∆tk ≈ 1.
This condition is satisfied in practice; it was argued earlier in



this section that we can typically expect that woTs � 1/100.
The second condition is that the sample rate of the simula-
tor, 1/Ts, be chosen as an integer multiple of the nominal
frequency of the pulses associated with the CT PFD out-
put. The effect of violating either of these conditions is the
introduction of false spurs in the output phase noise of the
synthesizer, as will be demonstrated in Section 5.

Given that the above conditions are satisfied, we can sim-
plify Equation 5 as

v(nTs) =

∞∑
k=−∞

εk(K1e
−wo(n−k)Ts + K2)u((n − k)Ts),

so that, for this case, we have

v(nTs) =

∞∑
k=−∞

εk

Ts
Tsh((n − k)Ts). (6)

Equation 6 is the conclusion of our effort, and matches the
picture representation of the method illustrated in Figure 4
when e[n] = εn/Ts.

Although the above analysis was performed for a simple
lead/lag loop filter, higher order filters can be analyzed in
similar fashion using the partial fraction expansion method.
Specifically, high order filters have impulse responses that
consist of a sum of exponentials, with each exponential cor-
responding to a distinct pole in the loop filter. The impact
of ek and ∆tk on each of these exponentials can be assessed
in the same manner as derived above.

3. IMPLEMENTATION OF PFD
Now that it has been established that the PFD output

signal can be accurately represented as a discrete-time se-
quence using a principle of area conservation, let us exam-
ine the practical issue of representing the PFD topology in
simulation code. It will be shown that the technique ac-
commodates a wide variety of PFD topologies by allowing
their ‘construction’ in the simulation code using primitive
elements such as registers and logic gates. Although the
framework will be explained in terms of a custom C++ sim-
ulator developed by the author, the method can be imple-
mented in a variety of frameworks including Verilog and
Matlab.

Figure 6 illustrates an XOR-based PFD [4] that is imple-
mented in Section 5 using the custom C++ simulator. In
this case, the registers, nand gates, and xor gate are im-
plemented as objects reg1, reg2, and1, xor1, etc. Each ob-
ject has associated output signals, which are designated as
reg1.out, reg2.out, and1.out, etc. Note that the nand gates
are implemented as ‘and’ gates whose outputs are comple-
mented with a sign change.

One should notice in Figure 6 that the signals vary be-
tween -1 and 1 as opposed to 0 and 1 as assumed in the
preceding sections. The reason for the change is that the
area conservation principle is easier to explain when signals
vary between 0 and 1, but the preferred practical implemen-
tation is to specify signals that vary between -1 and 1 since
it allows straightforward complement operations. This point
is demonstrated by Figure 7, which illustrates an example
e(t) and its complement e(t) along with their discrete-time
counterparts, e[n] and e[n]. By performing the linear oper-
ation e[n] =⇒ 2e[n] − 1, we see that the transformed signal
x[n] is now related to its complement through a simple sign
change.
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Implementation of the PFD as shown in Figure 6 requires
that computation of the PFD output be separable into sub-
computations associated with primitive elements such as
registers and logic gates. It will now be demonstrated that
this is indeed possible by showing that primitive elements
can process relevant information pertaining to the location
of edges of the reference clock and divided down VCO clock
and transfer that information to other primitives.

Figure 8 illustrates example input and output signals asso-
ciated with a register and a representative logic gate, namely
the ‘and’ gate. In the case of the register, the relevant tim-
ing information is contained in the clock signal. Specifically,
whenever there is a transition at the output of the register,
the location of that transition in time is set by the location
of the rising (or falling) edge of the clock. The transition
location is uniquely specified by the clk transition value (a
real number in the range of -1 to 1), and by the prior clk
sample value to determine whether the clk edge is rising
(prior clk sample = -1) or falling (prior clk sample = 1).
As shown in the figure, this information is transfered to the
register output by simply passing on the clk transition value
when the output transitions in the same direction, and pass-
ing on the complement of the clk transition value when the
output transitions in the opposite direction. In the case of
the ‘and’ gate, either input can cause the output to tran-
sition. As gleaned from the figure, it is straightforward to
determine which input is causing the transition, and appro-
priately pass its edge location value to the output of the
‘and’ gate. Similar arguments can be made for more com-
plicated registers that include set and reset functions, and
other primitives such as ‘or’ and ‘xor’ gates.
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4. VCO AND DIVIDER SIMULATION
Simulation of the VCO and divider portions of the PLL

is now discussed, and a technique illustrated whereby the
simulation sample period, Ts, can be set according to the
reference frequency rather than the much higher VCO fre-
quency. This technique typically allows more than two or-
ders of magnitude speedup in simulation time of the PLL
since the VCO frequency is typically more than two orders
of magnitude higher than the reference frequency. Unlike
a previous method that provided speedup for a PLL with
no divider and a memoryless phase detector by modeling
the VCO entirely in the phase domain [12], the presented
technique accommodates fractional-N synthesizers that have
dividers with dynamically varying value and digital PFD
topologies as described in the previous sections. The key
idea behind the technique is to combine the VCO and di-
vider into one computation block.

To begin, let us define the phase of the VCO, Φvco(t),
as the integral of its output frequency. Since the output
frequency of the VCO is varied about its nominal frequency
by its input voltage, we have:

Φvco(t) =

∫ t

−∞
2π(Kvv(τ) + fc)dτ + Φvn(t), (7)

where v(t) is the VCO input voltage, Kv is the VCO gain
(Hz/V), fc corresponds to the nominal VCO frequency when
v(t) = 0, and Φvn(t) is VCO noise as illustrated in Figure 2.
In general, Φvco(t) looks like a ramp in time, and rising edges
of the VCO output occur every time this signal increments
by 2π radians. Rising edges of the divider output occur
every N [m] rising edges of the VCO output, where N [m]
corresponds to the instantaneous divide value. Therefore, as
illustrated in Figure 9, the VCO phase, Φvco(t), completely
specifies the location of the divider edges.

Since Φvco(t) completely characterizes the VCO and di-
vider, simulation of these two blocks can be performed by
simply discretizing Equation 7 as

Φvco(nTs) =

n∑
k=−∞

2πTs(Kvv(kTs) + fc) + Φvn(nTs). (8)

To prevent loss of information in the CT to DT conversion,
1/Ts must be higher than twice the highest frequency con-
tent of v(t) and Φvn(t), as stated by the Nyquist theorem
[8]. From a practical perspective, this condition will often be
satisfied by meeting the sampling requirements for the PFD
output. Choosing a sample rate such that woTs � 1/100
is obviously sufficient for v(t) since it is the output of the

2πN[m]

2πN[m-1]

Φvco(t)

t

div(t)

Divider
output

Figure 9: Relationship of divider transitions to un-
wrapped VCO phase with varying divide value.

loop filter with bandwidth wo rad/s. Practically speaking,
Φvn(t) is also bandlimited since it rolls off at -20 dB/decade,
or more, before eventually hitting a low valued noise floor
[3]. To examine the effect of VCO noise, the value of Ts

should be chosen to allow evaluation of the phase noise per-
formance over the frequency offsets of interest.

Assuming all information of relevance related to the VCO
and divider is computed using Equation 8, the question that
remains is how one would model the divider output. In this
paper, the approach taken is to represent the divider out-
put in a consistent fashion as discussed for the PFD output.
Namely, the divider output has value either 1 or -1 for sam-
ples not coincident with edges, and takes on a real value in
the range of -1 to 1 for samples that are coincident with
edges, as discussed in Section 2 for the PFD output rep-
resentation. Note that this method is also applied to the
reference frequency output.

The most expedient way to explain the technique is to
present its implementation in code. As such, a simplified
version of the input function associated with class Vco in
the custom C++ simulator is shown below. The first part
of the code wraps the VCO phase to maintain numerical
accuracy throughout the simulation — leaving the phase
unwrapped will cause the phase value to increase over time,
which swamps out variations due to noise and, in turns, leads
to the introduction of numerical ‘noise’. The second part
of the code flips the state of the divider output depending
on the range of the VCO phase. The divider output is 1
between 0 and πN radians of VCO phase, and -1 between
πN and 2πN radians of VCO phase. Samples at transition
boundaries are calculated by interpolation of the VCO phase
to determine the precise edge location. Note that phase
noise associated with the VCO, Φvn(t), is not included in the
code. Rather, this noise is referred to the input of the VCO
[9] as discussed in the following section. Also, while a linear
relationship from input voltage to output frequency has been
assumed for the VCO for simplicity, a nonlinear relationship
is easily accommodated by multiplying the VCO input by a
polynomial gain expression rather than just Kv.

double Vco::inp(double in, double fc, int divide val)
{
phase = prev phase + sample period∗2.0∗PI∗(Kv∗in+fc);
if (phase >= 2∗PI∗N) // wrap VCO phase for accuracy
{
phase −= 2∗PI∗N;
if (prev phase >= phase)



prev phase −= 2∗PI∗N;
N = (double) divide val;
} 10

if (phase >= 0.0 && phase < PI∗N) // state = 1
{

if (clk state == 1) // no transition
out = 1.0;

else // compute sample value for transition
out = (phase+prev phase)/(phase−prev phase);

clk state = 1;
}

else // state = 0
{ 20

if (clk state == 0) // no transition
out = −1.0;

else // compute sample value for transition
out = (2∗PI∗N−(phase+prev phase))/

(phase−prev phase);
clk state = 0;

}
prev phase = phase;
return(out);
} 30

5. RESULTS
To test the validity of the proposed simulation techniques,

the results of simulating the dynamic behavior and noise
performance of a prototype synthesizer described in [9] are
now compared to corresponding calculated and measured
results. Figure 1 provides a block diagram of the prototype
system; the reader is referred to [9] for more details. Noise
analysis will include the noise sources depicted in Figure 2,
with VCO noise being input referred as a white noise source
as described in [9]. Parameters associated with the noise
sources are shown in Figure 10, which were computed from
Hspice simulations and VCO measurements.
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Figure 10: Model of charge pump and VCO noise.

Relevant characteristics of the prototype include a refer-
ence frequency of 20 MHz, a VCO with fc = 1.84 GHz and
Kv = 30 MHz/V, a second order Σ-∆ modulator, a charge
pump that outputs ±1.5 µamps, a nominal divide value of
92.3, a PFD topology as shown in Figure 6, and a lead/lag
filter with transfer function

H(jw) =
1 + jw/(2πfz)

C3jw(1 + jw/(2πfp))
,

where

fz = 11.6 kHz, fp = 127.2 kHz, C3 = 30e-12.

Simulation code for the prototype system is shown be-
low. The simulator consists of a set of custom written C++

classes that have been placed in the library ‘com blocks.a’
and are linked to the shown simulation code when it is com-
piled — the classes enable simulation of the various blocks
based on the techniques discussed in this paper. The simula-
tion sample frequency was chosen as 1/Ts = 400 MHz, which
is a factor of 20 higher than the reference frequency. The
loop filter was implemented using the Filter class, which in-
ternally converts an input s-domain transfer function to the
z-domain using the bilinear transform [8]. Also, note that
inclusion of the noise sources, as depicted in Figure 10, in
the code is quite straightforward.

#include "com_blocks.h"

main()
{
double Ts = 1/400e6; // simulation sample period
SdMbitMod sd mod("1 - 2z^-1 + z^-2"); // 2nd order
Probe probe("test.tr0",Ts); // output file
Vco vco("fc + Kv*x","fc,Kv,Ts",1.84e9,30e6,Ts);
SigGen ref clk("square",20e6,Ts); // 20 MHz ref clock
Reg reg1,reg2,reg3,reg4;
And and1,and2; 10

Xor xor1;
Rand randg("gauss");
Filter lfilt("1+1/(2*pi*fz)s","C3*s+C3/(2*pi*fp)*s^2",

"fp,fz,C3,Ts", 127.2e3,11.6e3,30e−12,Ts);
double chp out,vco in,Nsd,prev vco out,I chp,pfd out;
int i;
Nsd = 92.31793713; // choose value to avoid S-D spurs
sd mod.inp(Nsd); // initialize Sigma-Delta
prev vco out = vco.out;
I chp = 1.5e−6; 20

// 260e3 samples for dynamics, 5e6 samples for noise
for (i = 0; i < 260000; i++)
{

// Vary Nsd to sim dynamics (remove for noise sim)
if (i == 60000)

Nsd += 4;
if (i > 140000 && i < 186000)

Nsd −= 1e−4;
if (i > 186000 && i < 226000) 30

Nsd += 1e−4;
// SD modulator - update on rising edge of VCO

if (prev vco out == −1.0 && vco.out != −1.0)
sd mod.inp(Nsd);

// reference oscillator - specify zero phase deviation
ref clk.inp(0.0);

// PFD - XOR-based topology
reg1.inp(−reg1.out,ref clk.out);
reg2.inp(−reg2.out,vco.out);
xor1.inp(reg1.out,reg2.out); 40

reg3.inp(xor1.out,ref clk.out,−1.0,−reg4.out);
reg4.inp(xor1.out,vco.out,reg3.out,−1.0);
and1.inp(xor1.out,reg4.out);
and2.inp(−reg3.out,−and1.out);
pfd out = −and2.out;

// Charge Pump - include charge pump noise
chp out = pfd out∗I chp;
if (pfd out > 0.0)

chp out += sqrt(1.85e−25/Ts)∗randg.inp();
else 50

chp out += sqrt(1.2e−24/Ts)∗randg.inp();
// Loop Filter

lfilt.inp(chp out);
// VCO and divider - include VCO noise



prev vco out = vco.out; // save value for edge detect

vco in = lfilt.out + sqrt((3.25e−16)/Ts)∗randg.inp();

vco.inp(vco in,sd mod.out); // VCO input is vco in,

// divide value set by sd mod.out

// Save signals to file

probe.inp(Nsd,"Nsd"); 60

probe.inp(vco in,"vco");

}
}

To view the results of the simulation code, the data is
output to a binary file called test.tr0 using a C++ class
called Probe in the simulator. This file is binary compatible
with Hspice output; a custom written Hspice toolbox for
Matlab is used that allows direct loading of such files into
Matlab.

Figure 11 shows the simulated VCO output frequency
(constructed from the VCO input) in response to variations
at the input of the Σ-∆ modulator that include a step func-
tion and a ramp in divide value. The step size is chosen to
be large enough to knock the synthesizer out of frequency
lock — the corresponding oscillations in the VCO output
frequency are a result of cycle slipping before the VCO be-
comes frequency locked again. The subsequent ramp in di-
vide value illustrates the high resolution of the synthesizer
as its output frequency is varied over a 40 MHz range. The
simulation code was compiled with the GNU C++ compiler
and was performed on a Dell Latitude laptop running Win-
dows 2000 with a 650 MHz Pentium III processor and 256
MBytes of DRAM. The simulator computed 260 thousand
samples of the PLL signals in less than 5 seconds.

0 100 200 300 400 500 600 700
91

92

93

94

95

96

97
Simulated Dynamic Response of Sigma−Delta Frequency Synthesizer

N
sd

0 100 200 300 400 500 600 700
1820

1840

1860

1880

1900

1920

1940

V
C

O
 F

re
qu

en
cy

 (
M

H
z)

Time (Micro Seconds)

Figure 11: Simulated synthesizer dynamics.

As for examining the noise performance of the synthesizer,
let us begin by showing calculated and measured noise plots
taken from [9]. Figure 12 shows the calculated phase noise
based on an analytical model of the prototype; the contri-
bution of the individual noise sources depicted in Figure 2
to the overall phase noise is also shown. Figure 13 shows
the measured synthesizer phase noise, and also includes a
plot of the measured open loop VCO noise from which the
input referred VCO noise variance in Figure 10 was com-
puted. Note that the measured noise plot is not valid at
frequency offsets higher than 10 MHz due to the fact that

the noise floor of the measurement instrument dominates in
that region.
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Figure 12: Calculated synthesizer phase noise.
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Figure 13: Measured synthesizer phase noise and
open loop VCO noise.

The C++ simulation code shown earlier in this section
was slightly modified to numerically compute the phase noise
at the synthesizer output. In particular, the input to the Σ-
∆ modulator was held constant and the number of simula-
tion samples increased to 5 million in order to allow compu-
tation of the phase noise at frequency offsets less than 100
kHz. The entire simulation took 80 seconds on the same
laptop computer, and the results were again saved in the bi-
nary file test.tr0 and then loaded into Matlab. The output
phase noise of the synthesizer was then constructed from the
VCO input — this procedure is valid since the VCO input
includes the influence of all the PLL noise sources, as shown
in Figure 10.

The following Matlab code describes the construction of
the phase noise plot from the simulated VCO input — the
resulting simulated phase noise plot is shown in Figure 14.
Comparison of Figure 14 to Figures 12 and 13 reveal ex-
tremely close agreement between simulated, calculated, and
measured results.

% loadsig and evalsig are part of Hspice Toolbox
x = loadsig('test.tr0'); % load file from C++ sim
vin = evalsig(x,'vco'); % input to VCO
t = evalsig(x,'TIME'); % simulation time samples

% set parameters and cut out initial transient
Ts = t(2)−t(1); % simulation sample period
Kv = 30e6; % VCO gain (Hz/V)



vin = vin(40000:length(vin)); % cut out initial transient
% create VCO output phase based on integration of vin
phase = filter(Ts∗2∗pi∗Kv,[1 −1],vin−mean(vin)); 10

% calculate L(f)
[Pxx,f] = psd(sqrt(Ts)∗phase,2^16,1/Ts,2^16);
semilogx(f,10∗log10(Pxx));
axis([25e3 25e6 −150 −60]);
title('Simulated Phase Noise of S-D Freq. Synth.');
xlabel('Frequency Offset from Carrier (Hz)');
ylabel('L(f) (dBc/Hz)');
grid on;
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Figure 14: Simulated synthesizer phase noise
(1/Ts = 20*ref freq).

It was mentioned in Section 2 that the simulation sample
frequency, 1/Ts, should be chosen as an integer multiple of
the reference frequency in order to ignore the effects of ∆tk

in Equation 4. Figure 15 shows the impact of choosing a
non-integer multiple for Ts. We see there is no impact on
the wideband phase noise, but the reference spur at 20 MHz
offset is aliased to other frequency values as seen in the plot.
A detailed explanation of this effect is beyond the scope of
this paper, but a quick synopsis is that the aliasing occurs
due to the presence of harmonics above 402 MHz of the 20
MHz reference spur in the CT PFD output.
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Figure 15: Simulated synthesizer phase noise
(1/Ts = 20.1*ref freq).

6. CONCLUSION
Two techniques were presented in this paper that allow

fast and accurate simulation of fractional-N synthesizers at
a detailed behavioral level using a uniform time sample pe-
riod. The first provides accurate representation of the CT
PFD output with a DT sequence using an area conserva-
tion principle. The second allows a dramatic reduction of
the simulation sample frequency by including the divider
implementation in the VCO simulation module.

The techniques were incorporated into a custom C++
simulator, which was used to simulate the dynamic and noise
performance of a prototype Σ-∆ frequency synthesizer. The
simulations discussed in this paper took only 80 seconds to
compute 5 million samples on a laptop computer, thus show-
ing that the simulator is quite fast. The simulated noise per-
formance was shown to agree quite well with calculated and
measured results, thus showing that the simulator is also
accurate. The technique can also be applied to other phase
locked loop circuits, and be implemented in other simulation
frameworks such as Verilog and Matlab.
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