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Recall Constant Envelope Modulation from Lecture 19

 Popular for cell phones and cordless phones due to 
the reduced linearity requirements on the power amp
- Allows a more efficient power amp design

 Transmitter power is reduced
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Frequency Shift Keying

 Sends information encoded in instantaneous frequency
- Can build simple transmitters and receivers

 Pagers use this modulation method
 Issue – want to obtain high spectral efficiency
- Need to choose an appropriate transmit filter
- Need to choose an appropriate value of f
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Transmit Filter Selection

 Recall from Lecture 19 that output spectrum is related 
in a nonlinear manner to transmit filter
- Raised cosine filter is not necessarily the best choice

 We’ll come back to this issue
- Focus instead on choosing f
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A More Detailed Model

 By inspection of figure

 The choice of f is now parameterized by h and Td- h is called the modulation index, Td is symbol period
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MSK Modulation

 Choose h such that the phase rotates ± 90o each 
symbol period
- Based on previous slide, we need h = 1/2
- Note:  1-bit of information per symbol period

 Bit rate = symbol rate

I

Q
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A More Convenient Model for Analysis

 Same as previous model, but we represent data as 
impulses convolved with a rectangular pulse
- Note that h = 1/2 for MSK
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Impact of Sending a Single Data Impulse

 To achieve MSK modulation, resulting phase shift 
must be ± 90o (i.e., /4)

cos(Φmod(t))

sin(Φmod(t))

I(t)

Q(t)

Φmod(t)
2πTransmit

Filter
fmod(t)data(t) 1

Assume DC gain = 1

4Td

1
4Td

for infinite
transmit filter

bandwidth

π/2

Td

Td
Td

1

-1

Td

0
1x(t)

0

8



M.H. PerrottM.H. Perrott

Include Influence of Transmit Filter

 For MSK modulation

- Where * denotes convolution
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Gaussian Minimum Shift Keying

 Definition
- Minimum shift keying in which the transmit filter is chosen 

to have a Gaussian shape (in time and frequency) with 
bandwidth = B Hz

 Key parameters
- Modulation index:  as previously discussed

 h = 1/2
- BTd product:  ratio of transmit filter bandwidth to data rate

 For GSM phones:   BTd = 0.3  
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Project 2

 Simulate a GMSK transmitter and receiver
 What you’ll learn
- How GMSK works at the system level
- Behavioral level simulation of a communication system
- Generation of eye diagrams and spectral plots
- Analysis and simulation of discrete-time version of loop 

filter and other signals
 Note:   you’ll also be exposed a little to GFSK 

modulation
- Popular for cordless phones
- Similar as GMSK, but frequency is the important variable 

rather than phase
 Typical GFSK specs:  h = 0.5 ± 0.05, BTd = 0.5
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High Speed Data Links

 A challenging component is the clock and data 
recovery circuit (CDR)
- Two primary functions

 Extract the clock corresponding to the input data signal
 Resample the input data
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PLL Based Clock and Data Recovery

 Use a phase locked loop to tune the frequency and 
phase of a VCO to match that of the input data

 Performance issues
- Jitter
- Acquisition time
- Bit error rate (at given input levels)

 Let’s focus on specifications for OC-48
- i.e., 2.5 Gbit/s SONET
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Jitter Generation

 Definition
- The amount of jitter at the output of the CDR when no 

jitter (i.e., negligible jitter) is present on the data input
 SONET requires
- < 10 mUI rms jitter
- < 100 mUI peak-to-peak jitter

 Note:  UI is unit interval, and is defined as the period 
of the clk signal (i.e., 400 ps for 2.5 Gbit/s data rates)
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Jitter Tolerance

 Definition
- The maximum amount of jitter allowed on the input while 

still achieving low bit error rates (< 1e-12)
 SONET specifies jitter tolerance according to the 

frequency of the jitter
- Low frequency jitter can be large since it is tracked by PLL
- High frequency jitter (above the PLL bandwidth) cannot be 

as high (PLL can’t track it out)
 Limited by setup and hold times of PD retiming register
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Example Jitter Tolerance Mask

 CDR tested for tolerance compliance by adding sine wave 
jitter at various frequencies (with amplitude greater than 
mask) to the data input and observing bit error rate
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Jitter Transfer

 Definition
- The amount of jitter attenuation that the CDR provides 

from input to output
 SONET specifies jitter transfer by placing limits on its 

transfer function behavior from input to output
- Peaking behavior:  low frequency portion of CDR transfer 

function must be less than 0.1 dB
- Attenuation behavior:  high frequency portion of CDR 

transfer function must not exceed a mask limit

PD Charge
Pump

clk(t)e(t) v(t)Loop
Filter

VCO

retimed
data(t)

data(t)

17



M.H. PerrottM.H. Perrott

Example Jitter Transfer Mask

 CDR tested for compliance by adding sine wave jitter 
at various frequencies and observing the resulting 
jitter at the CDR output
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Summary of CDR Performance Specifications

 Jitter
- Jitter generation
- Jitter tolerance
- Jitter transfer (and peaking)

 Acquisition time
- Must be less than 10 ms for many SONET systems

 Bit error rates
- Must be less than 1e-12 for many SONET systems
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Phase Detectors in Clock and Data Recovery Circuits

 Key issue
- Must accommodate “missing” transition edges in input 

data sequence
 Two styles of detection
- Linear – PLL can analyzed in a similar manner as 

frequency synthesizers
- Nonlinear – PLL operates as a bang-bang control 

system (hard to rigorously analyze in many cases)
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Popular CDR Phase Detectors

 Linear
- Hogge detector produces an error signal that is 

proportional to the instantaneous phase error
 Nonlinear
- Alexander (Bang-bang) detector produces an error signal 

that corresponds to the sign of the instantaneous phase 
error
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A Closer Look at the Hogge Detector

 Error output, e(t), consists of two pulses with 
opposite polarity- Positive polarity pulse has an area that is proportional 

to the phase error between the data and clk- Negative polarity pulse has a fixed area corresponding 
to half of the clk period- Overall area is zero when data edge is aligned to falling 
clk edge
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Example CDR Settling Characteristic with Hogge PD

 CDR tracks out phase error with an exponential 
transition response

 Jitter occuring at steady state is due to VCO and 
non-idealities of phase detector
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Modeling of CDR with Hogge Detector

 Similar to frequency synthesizer model except
- No divider
- Phase detector gain depends on the transition density 

of the input data
 The issue of transition density
- Phase error information of the input data signal is only 

seen when it transitions
 VCO can wander in the absence of transitions

- Open loop gain (and therefore the closed loop 
bandwidth) is decreased at low transition densities
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A Common Loop Filter Implementation

 Use a lead/lag filter to implement a type II loop
- Integrator in H(s) forces the steady-state phase error to 

zero (important to minimize jitter)
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Open Loop Response and Closed Loop Pole/Zeros

 Key issue:  an undesired pole/zero pair occurs due to 
stabilizing zero in the lead/lag filter 
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Corresponding Closed Loop Frequency Response

 Undesired pole/zero pair causes peaking in the closed 
loop frequency response

 SONET demands that peaking must be less than 0.1 dB
- For classical lead/lag filter approach, this must be achieved 

by having a very low-valued zero
 Requires a large loop filter capacitor
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An Interesting Observation

 Calculation of closed loop transfer function

 Key observation
- Zeros in feedback loop do not appear as zeros in the 

overall closed loop transfer function!
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Method of Achieving Zero Peaking

 We can implement a stabilizing zero in the PLL feedback 
path by using a variable delay element
- Loop filter can now be implemented as a simple integrator

 Issue:  delay must support a large range
 See T.H. Lee and J.F. Bulzacchelli, “A 155-MHz Clock 

Recovery Delay- and Phase-Locked Loop”, JSSC, Dec 
1992
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Model of CDR with Delay Element

 Delay “gain”, Kd, is set by delay implementation
 Note that H(s) can be implemented as a simple 

capacitor
- H(s) = 1/(sC)
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Derivation of Zero Produced by Delay Element

 Zero set by ratio of delay gain to VCO gain
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Alternate Implementation

 Can delay data rather than clk
- Same analysis as before
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The Issue of Data Dependent Jitter

 For classical or Bulzacchelli CDR
- Type II PLL dynamics are employed so that steady state 

phase detector error is zero
 Issue:  phase detector output influences VCO phase 

through a double integrator operation
- The classical Hogge detector ends up creating data 

dependent jitter at the VCO output
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Culprit Behind Data Dependent Jitter for Hogge PD

 The double integral of the e(t) pulse sequence is 
nonzero (i.e., has DC content)
- Since the data transition activity is random, a low 

frequency noise source is created
 Low frequency noise not attenuated by PLL dynamics
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One Possible Fix

 Modify Hogge so that the double integral of the e(t) 
pulse sequence is zero
- Low frequency noise is now removed

 See L. Devito et. al., “A 52 MHz and 155 MHz Clock-
recovery PLL”, ISSCC, Feb, 1991
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A Closer Look at the Bang-Bang Detector

 Error output consists of pulses of fixed area that are 
either positive or negative depending on phase error

 Pulses occur at data edges
- Data edges detected when sampled data sequence is 

different than its previous value
 Above example illustrates the impact of having the 

data edge lagging the clock edge
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A Closer Look at the Bang-Bang Detector (continued)

 Above example illustrates the impact of having the 
data edge leading the clk edge
- Error pulses have opposite sign from lagging edge case
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Example CDR Settling Characteristic with Bang-Bang PD

 Bang-bang CDR response is slew rate limited- Much faster than linear CDR, in general
 Steady-state jitter often dominated by bang-bang 

behavior (jitter set by error step size and limit cycles)
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The Issue of Limit Cycles

 Bang-bang loops exhibit limit cycles during steady-
state operation
- Above diagram shows resulting waveforms when data 

transitions on every cycle
- Signal patterns more complicated for data that randomly 

transitions
 For lowest jitter:  want to minimize period of limit cycles
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The Impact of Delays in a Bang-Bang Loop

 Delays increase the period of limit cycles, thereby 
increasing jitter
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Practical Implementation Issues for Bang-Bang Loops 

 Minimize limit cycle periods
- Use phase detector with minimal delay to error output
- Implement a high bandwidth feedforward path in loop 

filter
 One possibility is to realize feedforward path in VCO

 See B. Lai and R.C Walker, “A Monolithic 622 Mb/s Clock 
Extraction Data Retiming Circuit”, ISSCC, Feb 1991

 Avoid dead zones in phase detector
- Cause VCO phase to wonder within the dead zone, 

thereby increasing jitter
 Use simulation to examine system behavior
- Nonlinear dynamics can be non-intuitive
- For first order analysis, see R.C. Walter et. al., “A Two-

Chip 1.5-GBd Serial Link Interface”, JSSC, Dec 1992
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