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Recall Constant Envelope Modulation from Lecture 19

Baseband to RF Modulation Power Amp
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" Popular for cell phones and cordless phones due to
the reduced linearity requirements on the power amp

= Allows a more efficient power amp design
= Transmitter power is reduced



Frequency Shift Keying
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Assume infinite bandwidth
in this example

® Sends information encoded in instantaneous frequency
= Can build simple transmitters and receivers
= Pagers use this modulation method
" |ssue —want to obtain high spectral efficiency
= Need to choose an appropriate transmit filter
= Need to choose an appropriate value of Af



Transmit Filter Selection
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" Recall from Lecture 19 that output spectrum is related

In a nonlinear manner to transmit filter

= Raised cosine filter is not necessarily the best choice

® \We'll come back to this issue
= Focus instead on choosing Af



A More Detailed Model

Assume DC gain =1
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" By inspection of figure
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" The choice of Af is now parameterized by h and T,
= his called the modulation index, T, is symbol period



MSK Modulation

" Choose h such that the phase rotates & 90° each
symbol period
= Based on previous slide, we need h =1/2
= Note: 1-bit of information per symbol period
= Bit rate = symbol rate



A More Convenient Model for Analysis
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® Same as previous model, but we represent data as
Impulses convolved with a rectangular pulse

= Note that h = 1/2 for MSK



Impact of Sending a Single Data Impulse

I(t)
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" To achieve MSK modulation, resulting phase shift
must be £ 90° (i.e., n/4)



Include Influence of Transmit Filter
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Gaussian Minimum Shift Keying

" Definition
= Minimum shift keying in which the transmit filter is chosen

to have a Gaussian shape (in time and frequency) with
bandwidth = B Hz
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" Key parameters
= Modulation index: as previously discussed
» h=1/2
= BT, product: ratio of transmit filter bandwidth to data rate
= For GSM phones: BT,=0.3
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Project 2

B Simulate a GMSK transmitter and receiver

" What you'll learn
= How GMSK works at the system level
= Behavioral level simulation of a communication system
= Generation of eye diagrams and spectral plots
= Analysis and simulation of discrete-time version of loop
filter and other signals
" Note: you’ll also be exposed a little to GFSK
modulation
= Popular for cordless phones

= Similar as GMSK, but frequency is the important variable
rather than phase

= Typical GFSK specs: h=0.5+ 0.05,BT,;=0.5
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High Speed Data Links
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" A challenging component is the clock and data

recovery circuit (CDR)

= Two primary functions

= Extract the clock corresponding to the input data signal
= Resample the input data
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PLL Based Clock and Data Recovery

data(t) e(t)> Charge| | Loop

Pump Filter

" Use aphase locked loop to tune the frequency and
phase of a VCO to match that of the input data

" Performance issues
= Jitter
= Acquisition time
= Bit error rate (at given input levels)
" Let’s focus on specifications for OC-48
= 1.e., 2.5 Gbit/s SONET
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Jitter Generation

data(t) e(t) |charge| [ Loop
| Pump Filter

" Definition
= The amount of jitter at the output of the CDR when no
jitter (i.e., negligible jitter) is present on the data input
® SONET requires
= <10 mUl rms jitter
= <100 mUI peak-to-peak jitter
" Note: Ulis unit interval, and is defined as the period
of the clk signal (i.e., 400 ps for 2.5 Gbit/s data rates)
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Jitter Tolerance

uwer
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= Definition
= The maximum amount of jitter allowed on the input while
still achieving low bit error rates (< 1e-12)

" SONET specifies jitter tolerance according to the
frequency of the jitter
= Low frequency jitter can be large since it is tracked by PLL

= High frequency jitter (above the PLL bandwidth) cannot be
as high (PLL can’t track it out)

» Limited by setup and hold times of PD retiming register
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Example Jitter Tolerance Mask

0OC-48 Jitter Tolerance Mask
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" CDR tested for tolerance compliance by adding sine wave
jitter at various frequencies (with amplitude greater than

mask) to the data input and observing bit error rate

| L i I
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Jitter Transfer
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" Definition
= The amount of jitter attenuation that the CDR provides
from input to output

® SONET specifies jitter transfer by placing limits on its
transfer function behavior from input to output

= Peaking behavior: low frequency portion of CDR transfer
function must be less than 0.1 dB

= Attenuation behavior: high frequency portion of CDR
transfer function must not exceed a mask limit
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Example Jitter Transfer Mask

01 0OC-48 Jitter Transfer Mask
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" CDRtested for compliance by adding sine wave jitter
at various frequencies and observing the resulting

jitter at the CDR output




Summary of CDR Performance Specifications

= Jitter

= Jitter generation

= Jitter tolerance

= Jitter transfer (and peaking)
" Acquisition time

= Must be less than 10 ms for many SONET systems
" Bit error rates

= Must be less than 1e-12 for many SONET systems
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Phase Detectors in Clock and Data Recovery Circuits

retimed
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" Key issue
= Must accommodate “missing” transition edges in input
data sequence

" Two styles of detection

= Linear — PLL can analyzed in a similar manner as
frequency synthesizers

= Nonlinear — PLL operates as a bang-bang control
system (hard to rigorously analyze in many cases)
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Popular CDR Phase Detectors

Hogge Detector (Linear) Bang-Bang Detector (Nonlinear)
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= Hogge detector produces an error signal that is
proportional to the instantaneous phase error

" Nonlinear

= Alexander (Bang-bang) detector produces an error signal

that corresponds to the sign of the instantaneous phase
error
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A Closer Look at the Hogge Detector

Hogge Detector (Linear)
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" Error output, e(t), consists of two pulses with
opposite polarity
= Positive polarity pulse has an area that is proportional
to the phase error between the data and clk

= Negative polarity pulse has a fixed area corresponding
to half of the clk period

= Overall areais zero when data edge is aligned to falling
clk edge



Example CDR Settling Characteristic with Hogge PD

Instantaneous Phase Error vs Time for CDR 1 (Hogge Detector)
(Steady-State RMS Jitter = 3.0756 mUlI)

0.6

Instantaneous Phase Error (Ul)

0 4 8 1|2 16 26 2|4 2é3 3|2 36
" CDRtracks out phase error with an exponential
transition response

= Jitter occuring at steady state is due to VCO and
non-idealities of phase detector
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Modeling of CDR with Hogge Detector

Hogge Detector

---------------

- . Charge Loo
: Sampler : Pumgp Filtepr VCO

Dyatat) ; : i D(t)

---------------

o, = transition density
O<ac<l =1/2
for PRBS input

" Similar to frequency synthesizer model except
= No divider

= Phase detector gain depends on the transition density
of the input data

" The issue of transition density

= Phase error information of the input data signal is only
seen when it transitions

= VVCO can wander in the absence of transitions

= Open loop gain (and therefore the closed loop
bandwidth) is decreased at low transition densities



A Common Loop Filter Implementation

Hogge Detector

---------------

Charge Loop
Pump Filter
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o, = transition density
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" Use alead/lag filter to implement a type Il loop

= Integrator in H(s) forces the steady-state phase error to

zero (important to minimize jitter)
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Open Loop Response and Closed Loop Pole/Zeros

Evaluation of
Phase Margin

Closed Loop Pole
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" Key issue: an undesired pole/zero pair occurs due to
stabilizing zero in the lead/lag filter
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Corresponding Closed Loop Frequency Response

Peaking caused by
[G(w)] undesired pole/zero pair

ch/Wz.. /

0 | | w
z (0]

Frequency (rad/s)

" Undesired pole/zero pair causes peaking in the closed
loop frequency response
" SONET demands that peaking must be less than 0.1 dB

= For classical lead/lag filter approach, this must be achieved
by having a very low-valued zero

» Requires a large loop filter capacitor
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An Interesting Observation

X(s) NA(S) Y(s)
-O—5a+=
Ng(s) .
Dg(s)

" Calculation of closed loop transfer function

Y(s) _ Na(s)/Da(s)
X(s) 14 Np(s)/Dp(s)  Na(s)/D4(s)
_ N(s)Dp(s)
DA(s)Dp(s) + Np(s)N4(s)

" Key observation

= Zeros in feedback loop do not appear as zeros in the
overall closed loop transfer function!
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Method of Achieving Zero Peaking

data(t) e(t)A Charge

Pump

: tﬁfe‘? v(t) clk(t) _l' _l' _l' _m' _l'

Adjustable
Delay Element

" We can implement a stabilizing zero in the PLL feedback
path by using a variable delay element

= Loop filter can now be implemented as a simple integrator
" |ssue: delay must support alarge range

" See T.H. Lee and J.F. Bulzacchelli, “A 155-MHz Clock
Recovery Delay- and Phase-Locked Loop”, JSSC, Dec

1992
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Model of CDR with Delay Element

Hogge Detector

---------------

' . Charge Loo
» Sampler : Pumgp FiIteF; VCO

q)data(t) ' 1 i (t) v(t) 21K q)out(t)
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for PRBS input +
or inpu é_l_
| <
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are radians/V

---------------

" Delay “gain”, K4, is set by delay implementation
" Note that H(s) can be implemented as a simple
capacitor
= H(s) = 1/(sC)
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Derivation of Zero Produced by Delay Element

Hogge Detector

---------------

Loop
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m Zero set by ratio of delay gain to VCO gain
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Alternate Implementation

data(t) oD e(t)A Charge | | Loop
| 7 Pump Filter

Adjustable 1
Delay Element

| 1

7

" Can delay data rather than clk
= Same analysis as before



The Issue of Data Dependent Jitter

retimed

— | F—

data(t) e(t)_ Charge | | Loop
| Pump | | Filter

® For classical or Bulzacchelli CDR

= Type Il PLL dynamics are employed so that steady state
phase detector error is zero

" |ssue: phase detector output influences VCO phase
through a double integrator operation

= The classical Hogge detector ends up creating data
dependent jitter at the VCO output
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Culprit Behind Data Dependent Jitter for Hogge PD

Hogge Detector (Linear)

data)
ck@y [ L[ L[ L
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" The double integral of the e(t) pulse sequence is
nonzero (i.e., has DC content)

= Since the data transition activity is random, a low
frequency noise source is created

= Low frequency noise not attenuated by PLL dynamics
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One Possible Fix

Hogge Detector (Linear)

e(t

) © data(t) ]
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" Modify Hogge so that the double Integral of the e(t)
pulse sequence is zero

= Low frequency noise is now removed

" See L. Devito et. al.,
recovery PLL", ISSC

“A 52 MHz and 155 MHz Clock-
C, Feb, 1991
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A Closer Look at the Bang-Bang Detector

Bang-Bang Detector (Nonlinear) P data(t) ] 1
retimed ! ck®) ] | | | L :
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" Error output consists of pulses of fixed area that are
either positive or negative depending on phase error
" Pulses occur at data edges
= Data edges detected when sampled data sequence is
different than its previous value
" Above example illustrates the impact of having the
data edge lagging the clock edge



A Closer Look at the Bang-Bang Detector (continued)

Bang-Bang Detector (Nonlinear) data(t) _|4- L4-_|<-
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" Above example illustrates the impact of having the
data edge leading the clk edge

= Error pulses have opposite sign from lagging edge case
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Example CDR Settling Characteristic with Bang-Bang PD

Instantaneous Phase Error vs Time for CDR 2 (Bang-Bang Detector)
(Steady-State RMS Jitter = 3.4598 mUlI)
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" Bang-bang CDR response is slew rate limited
= Much faster than linear CDR, in general

" Steady-state jitter often dominated by bang-bang
behavior (jitter set by error step size and limit cycles)
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The Issue of Limit Cycles

Bang-Bang Style

I Phase Detector —[T-8a0

i E Ik
data(t) ] sense e(t) Lo :v(t) clk(t) J‘“‘“‘“‘“‘“‘

! !
‘~-___f __________________________ . VCO

IL
" Bang-bang loops exhibit limit cycles during steady-

state operation

= Above diagram shows resulting waveforms when data
transitions on every cycle

= Signal patterns more complicated for data that randomly
transitions

" For lowest jitter: want to minimize period of limit cycles
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The Impact of Delays in a Bang-Bang Loop

Bang-Bang Style

I Phase Detector —[T-La0

data(t) e(t) L v(t) clk(t) ” ” ” ” ” I—
——+| Sense »| Delay —={ Drive |

! !
‘~-___f __________________________ . VCO

v(t)

Deii(t)

e(t)

" Delays increase the period of limit cycles, thereby
Increasing jitter
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Practical Implementation Issues for Bang-Bang Loops

" Minimize limit cycle periods
= Use phase detector with minimal delay to error output

= Implement a high bandwidth feedforward path in loop
filter

= One possibility is to realize feedforward path in VCO

= See B. Lai and R.C Walker, “A Monolithic 622 Mb/s Clock
Extraction Data Retiming Circuit”, ISSCC, Feb 1991

" Avoid dead zones in phase detector

= Cause VCO phase to wonder within the dead zone,
thereby increasing jitter

" Use simulation to examine system behavior

= Nonlinear dynamics can be non-intuitive

= For first order analysis, see R.C. Walter et. al., “A Two-
Chip 1.5-GBd Serial Link Interface”, JSSC, Dec 1992
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