Analysis and Design of Analog Integrated Circuits Lecture 9

Open Circuit Time Constant Technique

Michael H. Perrott February 26, 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

Review of Our Analysis Techniques

Two port analysis allows us to quickly calculate small signal gain from cascaded network stages

M.H. Perrott

2

The Problem with Complex Impedances

- When complex impedances are considered (i.e., capacitors, inductors, and resistors), things get much more messy
 - Complex impedance calculations are time consuming
 - Capacitance between drain and gate of transistors complicates calculation effort further

Can we determine a faster analysis path to gain intuition?

General Frequency Response for Amplifiers

- Midband gain can be calculated by assuming purely resistive impedances (as we have done so far)
 - Large valued capacitors used for AC coupling will be shorts in this analysis
 - For DC coupled circuits, typically DC gain = Midband Gain
- **—** Small valued capacitors will be opens in this analysis

Our Focus Will Be on High Frequency Poles

- We are particularly interested in knowing the bandwidth of our amplifier circuit
 - Bandwidth is primarily set by the lowest frequency pole, w₀
 - Additional attenuation occurs at frequencies beyond the amplifier bandwidth by higher frequency poles w₁, w₂, etc.

Open Circuit Time Constant Technique

- The Open Circuit Time Constant (OCT) technique allows us to quickly estimate the bandwidth of an amplifier circuit
 - We will see that it is most accurate when there is one dominant pole, w₀
 - This means that w₁, w₂, and higher poles are not close in frequency to w₀
 - This will hold for opamps and other circuits that operate in feedback
 - There is still considerable value to the OCT method in providing design intuition even when there is not just one dominant pole

Short Circuit Time Constant Technique

- The Short Circuit Time Constant (SCT) technique allows us to quickly estimate the AC-coupled cutoff frequency, w_{ac0}
 - This has many similarities to the OCT method, but we will not discuss in this class since
 - AC coupling is not used very often in integrated circuits due to the high cost of large valued capacitors
 - When AC coupling is applied in integrated circuits, it is often quite easy to estimate the AC-coupled cutoff frequency since there are relatively few poles in the circuit related to AC-coupling

Key Assumptions for the OCT Technique

Let us assume that the transfer function from V_{in} to V_{out} is

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{K}{(\tau_0 s + 1)(\tau_1 s + 1)\cdots(\tau_{n-1} s + 1)}$$

Note that we are ignoring any AC-coupling poles/zeros

- This implies that are approximating DC gain = Midband gain
- The OCT method does not require this assumption it just simplifies the analysis to follow

Note also that DC gain equals K in the above transfer function

• We see this by setting *s* = 0

Key Idea of the OCT Technique

Assuming the transfer function from V_{in} to V_{out} is:

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{K}{(\tau_0 s + 1)(\tau_1 s + 1)\cdots(\tau_{n-1} s + 1)}$$

We can achieve a reasonable approximation of the bandwidth of the system by instead considering:

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{K}{\left(\sum_{i=0}^{n-1} \tau_i\right)s + 1}$$

- Here τ_i are the "time constants" corresponding to the poles of the circuit network

Bandwidth Estimate from OCT Technique

• The OCT technique approximates the transfer function as: $\frac{V_{out}(s)}{V_{in}(s)} = \frac{K}{\left(\sum_{i=0}^{n-1} \tau_i\right)s + 1}$

The estimated bandwidth is found by substituting
$$s = jw_0$$

and solving for w_0 such that the magnitude is $K/\sqrt{2}$

$$w_{0} = \frac{1}{\sum_{i=0}^{n-1} \tau_{i}} \Rightarrow \left| \frac{V_{out}(w_{0})}{V_{in}(w_{0})} \right| = \left| \frac{K}{j1+1} \right| = \frac{K}{\sqrt{2}}$$

Bandwidth estimate found by inversing the sum of time constants!

Why Is This Approximation Reasonable?

Consider a second order example:

$$\frac{V_{out}(w_0)}{V_{in}(w_0)} = \frac{K}{(j\tau_0 w_0 + 1)(j\tau_1 w_0 + 1)}$$

Expanding:

$$\frac{V_{out}(w_0)}{V_{in}(w_0)} = \frac{K}{-\tau_0 \tau_1 w_0^2 + j(\tau_0 + \tau_1) w_0 + 1}$$

But notice (since the time constant values are > 0):

$$j(\tau_0 + \tau_1)w_0 = j1 \implies \tau_0 w_0 < 1, \ \tau_1 w_0 < 1$$

- In fact: $\tau_0 \tau_1 w_0^2 \le 0.25$
- The worse case of $\tau_0 \tau_1 \omega_0^2 = 0.25$ occurs when $\tau_0 = \tau_1$:

$$\left|\frac{V_{out}(w_0)}{V_{in}(w_0)}\right| = \left|\frac{K}{j1+1-0.25}\right| = \frac{K}{\sqrt{1.56}} \approx \frac{K}{\sqrt{2}}$$

• The approximation will be better for $\tau_o \neq \tau_1$

Key Issues For the OCT Approximation

For the higher order transfer function

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{K}{(\tau_0 s + 1)(\tau_1 s + 1)\cdots(\tau_{n-1} s + 1)}$$

The OCT approximation for bandwidth is

$$BW \approx \frac{1}{\sum_{i=0}^{n-1} \tau_i} \ rad/s$$

- As hinted at by our second order example:
 - The OCT approximation will have much better accuracy if the time constants are different, and particularly if there is one dominant time constant
 - The bandwidth estimate by the OCT method is typically conservative (i.e., actual bandwidth > OCT estimate)
 - Complex poles can lead to actual bandwidth < OCT estimate</p>

But how do we compute $\sum_{i=0}^{n-1} \tau_i$?

OCT Method of Calculating the Sum of Time Constants

- OCT method calculates $\sum_{i=0}^{n-1} \tau_i$ by the following steps:
 - Compute the effective resistance R_{thj} seen by each capacitor, C_i, with other caps as open circuits
 - AC coupling caps are not included considered as shorts
 - Form the "open circuit" time constant T_j = R_{thj}C_j for each capacitor C_j
 - Sum all of the "open circuit" time constants
- As proved by Richard Adler at MIT

$$\sum_{i=0}^{n-1} \tau_i = \sum_{j=1}^m R_{thj} C_j$$

This implies that the sum of the transfer function pole time constants is the same as the sum of the open circuit time constants

$$\Rightarrow BW \approx \frac{1}{\sum_{j=1}^{m} R_{thj}C_j} \ rad/s$$

How Do You Tell if a Cap is for AC coupling or OCT?

- In general, capacitors associated with AC coupling have the property that the amplifier gain *increases* as the capacitor goes from open to short
 - These capacitors are simply assumed to be shorts for the OCT analysis
- In general, capacitors used in the OCT calculation have the property that the amplifier gain *decreases* as the capacitor goes from open to short
 - These capacitors must all be considered in the OCT analysis

Example: Second Order RC Network

Transfer function of the above network:

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{1}{R_1 R_2 C_1 C_2 s^2 + (R_1 C_1 + R_1 C_2 + R_2 C_2)s + 1}$$

The sum of the time constants from the poles of the above network are obtained by inspection of the first order coefficient in the above transfer function

$$\Rightarrow BW \approx \frac{1}{\sum_{i=0}^{n-1} \tau_i} = \frac{1}{R_1 C_1 + R_1 C_2 + R_2 C_2} \ rad/s$$

For more complex networks, the direct approach of explicitly calculating the transfer function is quite tedious
M.H. Perrott

OCT Method Applied to Second Order RC Network

Obtain the Thevenin resistance values seen by each capacitor with other capacitors as opens

$$R_{th1} = R_1 \implies R_{th1}C_1 = R_1C_1$$

$$R_{th2} = R_1 + R_2 \implies R_{th2}C_2 = (R_1 + R_2)C_2$$

Bandwidth estimate from OCT method:

$$\Rightarrow BW \approx \frac{1}{\sum_{j=1}^{m} R_{thj}C_j} = \frac{1}{R_1C_1 + (R_1 + R_2)C_2} \ rad/s$$

Note that OCT method agrees with estimate based on direct calculation of the transfer function, but is much faster!

Example: Common Source Amplifier

Estimate the bandwidth of the above amplifier using the OCT method

- What capacitances should be considered?
- What Thevenin resistances must be calculated?

Key Capacitances for CMOS Devices

channel to bulk cap: C_{cb} - ignore in this class *M.H. Perrott*

CMOS Hybrid- π Model with Caps (Device in Saturation)

$$\begin{split} C_{gs} &= C_{gc} + C_{ov} = \frac{2}{3} C_{ox} W(L-2L_D) + C_{ov} \\ C_{gd} &= C_{ov} \\ C_{sb} &= C_{jsb} \quad (area + perimeter junction capacitance) \\ C_{db} &= C_{jdb} \quad (area + perimeter junction capacitance) \end{split}$$

Back to Common Source Amplifier

- Of the above capacitors, only C_{gs}, C_{gd}, and C_{db} must be considered
 - C_{sb} is grounded on both sides
- Thevenin resistance calculations
 - **–** C_{db} : $R_{thd} \parallel R_d$
 - C_{gs} and C_{gd}: these involve new Thevenin resistance calculations

OCT Thevenin Resistance Calculations

C_{gs}: Thevenin resistance between gate and source

$$R_{th_{gs}} = \frac{R_S(1 + R_D/r_o) + R_G(1 + (g_{mb} + 1/r_o)R_S + R_D/r_o)}{1 + (g_m + g_{mb})R_S + (R_S + R_D)/r_o}$$

C_{gd}: Thevenin resistance between gate and drain

$$R_{th_{gd}} = (R_D + R_G)(1 - r_{ods}/r_o) + r_{ods}g_m R_G$$

where $r_{ods} = r_o || \frac{R_D}{1 + (g_m + g_{mb})R_S}$

OCT Calculations for Common Source Amplifier

Estimated bandwidth from OCT method:

$$BW \approx \frac{1}{\sum_{j=1}^{m} R_{thj}C_j} = \frac{1}{(R_{th_d}||R_d) C_{db} + R_{th_{gd}}C_{gd} + R_{th_{gs}}C_{gs}} rad/s$$

 The above calculations are straightforward given the Thevenin resistance formulas for R_{thd}, R_{thgd}, and R_{thgs}