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Outline of Lecture

= ADC Topologies
= Flash
= SAR
= Pipeline
= Interleaved
= Sigma-Delta

" Special focus on the emerging area of VCO-based
ADCs



Analog to Digital Conversion
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" Analog input is typically voltage
" Digital output consists of bits, D,, with values 0 or 1

= Key characteristics similar to DAC

= Full scale =V
= Resolution =V /2N =1 LSB
= Nonlinearity measured with INL, DNL, Monotonicity



Flash ADC

N-Stage
Resistor
Ladder Pre-Amp Comparator

" Fastest ADC structure (> 1 GHz)

= Performs direct comparison of an input signal to a set of
voltage references using parallel comparators

= Typically limited to 8-bit resolution
= Relatively large area and power for higher resolution



SAR ADC
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" Leverages a DAC to sequentially compare its output
values to the input voltage

= Minimal analog complexity - requires only one
comparator and a capacitor DAC

= Successive Approximation Algorithm (SAR) is efficient
comparison algorithm for comparing DAC to input value

= Has recently become very attractive in advanced CMOS
for modest resolution (i.e., 8 to 10 bits) applications



SAR Algorithm
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" We can efficiently compare the DAC output to the
input voltage, V., by successively subdividing the
range from MSB to LSB

= Number of comparisons = number of bits

= Example: 10-bit SAR ADC requires roughly 10
comparisons per sample



Pipeline ADC
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" Resolves ADC bits in several stages
= Earlier stages resolve MSB bits

= Calculate residue for later stages through subtraction of
MSB estimate

= Amplify residue so that all stages operate over similar
voltage ranges

" Pipeline trends
= 1-bit per stage in the past; now going to multi-bit per stage

= For advanced CMOS, interleaved SAR architectures are
starting to look more attractive than pipelines




Interleaved ADC
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Sigma-Delta ADC (Discrete-Time)

Multi-Level
Quantizer
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" Oversampled input
= Clock rate is much higher than bandwidth of input
signal
" Noise shaped quantization noise

= Uses similar concepts as Sigma-Delta DAC considered
in Lecture 22

= |_eads to high effective precision despite having a coarse
guantizer



Sigma-Delta ADC (Continuous-Time)

Multi-Level
Quantizer
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" Similar to Discrete-Time, but important differences
= Sampler occurs after the filtering
= Allows removal of high frequency noise before sampling

= Only the quantizer and DAC need to settle during each
sample

= Allows higher speed
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Time-to-Digital Conversion
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" Quantization in time achieved with purely digital gates
= Easy implementation, resolution improving with Moore’s law

How can we leverage this for quantizing an analog voltage?




Adding Voltage-to-Time Conversion
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Naraghi, Courcy, Flynn, ISSCC 2009

" Analog voltage is converted into edge times

= Time-to-digital converter then turns the edge times into
digitized values

" Key issues
= Non-uniform sampling
= Noise, nonlinearity

Is there a simple implementation for
the Voltage-to-Time Converter?
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A Highly Digital ADC Implementation
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" A voltage-controlled ring oscillator offers a simple
voltage-to-time structure

= Non-uniform sampling is still an issue

We can further simplify this implementation and
lower the impact of non-uniform sampling
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Making Use of the Ring Oscillator Delay Cells

--------------------------------------------------------------

Ring Oscillator
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= Utilize all ring oscillator outputs and remove TDC delays
= Simpler implementation

" TDC output now samples/quantizes phase state of oscillator ,



Improving Non-Uniform Sampling Behavior

--------------------------------------------------------------
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" Oscillator edges correspond to a sample window of the input

= Sampling the oscillator phase state yields sample windows
that are much more closely aligned to the TDC clk



Multi-Phase Ring Oscillator Based Quantizer
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= Quantizer output corresponds to the number of delay cells
that experience a transition in a given Ref clock period




More Detalls ...

tune N-Stage Ring Oscillator Example: Progression of
' ' ' 9-Stage Ring Oscillator Values

oriSororae oo v, | i ]

v i 900 v l Rf:| | | |
Ref +»b N-bit Register E o

| 1_ 1' i' i 1' 1' 1010110101 : 110101010 : 101010010 :
> | © | N-bit|Register 5 : Ny ——y \ :

L 2 4 vV vy °°° vy vv 5101010101501011010151101010105

E :NXOREGatesE ' : . . :

v v y °%°° v v 5111100000510001111150111110005
Adder : : : :

¥ Out ' Out=4 '@ Out=6 '@ Out=5

" Choose large enough number of stages, N, such that
transitions never cycle through a given stage more than once
per Ref clock period

= Assume a high Ref clock frequency (i.e., 1 GHz)

= XOR operation on current and previous samples provides
transition count 7



A First Step Toward Modeling

N-Stage Ring Oscillator : First Order
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VCO Frequency :
" VCO provides quantization, register provides sampling
= Model as separate blocks for convenience

" XOR operation on current and previous samples
corresponds to a first order difference operation

= Extracts VCO frequency from the sampled VCO phase signal



Corresponding Frequency Domain Model

i First Order
" VCO modeled as integrator VCO  Quantizer Difference
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Example Design Point for lllustration

Simulated ADC Output Spectrum
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= Nominal delay per
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SNR/SNDR Calculations with 20 MHz Bandwidth
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Classical Analog Versus VCO-based Quantization

N-Stage . N-Stage Ring Oscillator

Resistor :
Ladder Pre-Amp Comparator ,

—bb - N-bit Register

IR

Much more digital implementation

Offset and mismatch is not of critical concern
Metastability behavior is potentially improved
Improved SNR due to quantization noise shaping

Implementation is high speed, low power, low area
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Key Performance Issues: Nonlinearity and Noise
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Feedback Is Our Friend

éRef (1 GHz) Iwata, Sakimura, TCAS Il, 1999
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= Structure is a continuous-time Sigma-Delta ADC

" |ssue: must achieve a highly linear DAC structure
= Otherwise, noise folding and other bad things happen ...
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A Closer Look at the DAC Implementation

éRef (1 GHz)
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What is so special about doing this?




Recall that Ring Oscillator Offers Implicit Barrel Shifting
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Implicit Barrel Shifting Applied to DAC Elements

-@-

Ref_lT

Ref (1 GH .
ot {1 GHz) Miller, US Patent (2004)
Vo Qi " ===
Gain and |Vune | vCO-based | OUt.  TTTTTTeeee L
Filtering > Quantizer > pmmmmmmmmmmmmseeaaeesaaeaalLiTIIR Bl
Viune * N-Stage Ring Oscillator :
une 1 e 2 2 a 1
Implicit E _ﬁo_‘ —&Oﬂ :
DAC Out . (XY .
- / DAC |« Barrel-Shift [¢- : | [ [ | [ | :
\, DEM : v v o0 | l '
. Ref<|:: b N-bitRegister | |
~‘§" E i_ 1 i_ I |... [ I_ [ i_ E
: ‘. . ; D ' N-bit|Register ' :
. l r (X X
A A 4 A A 4 | Yv | | vVYy A A 4
. . ‘\ : —\ . N XOR Gates:
111100000 : 100011111 : 011111000 : Vo] ] eee | ]
: : SN : 1-Bit DACs

= Barrel shifting action of

quantizer transferred to
1-bit DAC elements
= Acts to shape DAC mismatch and linearize its behavior
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First Generation Prototype

PAN 973 MHZ¢
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" Second order dynamics achieved with only one op-amp

= Op-amp forms one integrator

= ly..4 and passive network form the other (lossy) integrator
= Minor loop feedback compensates delay through quantizer

" Third order noise shaping is achieved!

= VCO-based quantizer adds an extra order of noise shaping
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Custom IC Implementing the Prototype

AN 973 MHz ¢
1 Y Straayer, Perrott
Vin VCO-based | Pour VLSl 2007
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- | O
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0.13u CMOS M 0
Power: 40 mW | ]

Active area: 700u X 700u
Peak SNDR: 67 dB (20 MHz BW)
Efficiency: 0.5 pJ/conv. step
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Measured Spectrum From Prototype
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Measured SNR/SNDR Vs. Input Amplitude (20 MHz BW)
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Summary

" ADC design is an active area of research
= Many topologies possible
= Much innovation is still ongoing, especially as new CMOS
fabrication processes are introduced

" Key topologies
= Flash
= SAR
= Pipeline
= Sigma-Delta
" VCO-based ADCs are a new area of interest
= Take advantage of high speed of new CMOS processes

= Leverage digital circuits
= Can achieve good performance, but innovation still needed
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