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Outline of Lecture

® Basic CMOS sampling structure
" Feedback sampling
" Noise of CMOS sampling structure



The Need for Sample and Hold Circuits
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" Analog-to-digital converters (ADC) are key elements in
allowing digital processors to interact with “real world”
signals in the acoustic, RF, and optical domains

" Sample and hold circuits are often utilized to keep the
Input signal into the ADC constant while it is
performing its conversion

= Key metrics: sampling accuracy, sampling speed, hold
time (while maintaining accuracy)



Track and Hold Versus Sample and Hold
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" Track and hold alternates between following and
holding the input value

" Sample and hold can be created by cascading two
track and hold circuits

= Similar to digital registers which are created by
cascading two latches



Track and Hold Based on a CMOS Switch
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B CMOS transistors make nice switches

= Much better than bipolar devices since they do not have
the issue of base charge storage

" Key performance issues
= Switch resistance
= Charge injection
= Leakage



Impact of Switch Resistance
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" Accurately following the input by the end of the
tracking period is important in order to achieve an
accurate hold value

= Switch resistance, R,,, and load capacitance, C , form a
lowpass filter with limited bandwidth

= Low R, Is desirable for better tracking behavior

= The cutoff frequency of the RC lowpass must be
significantly higher than the frequency of V(1)



Calculation of Switch Resistance
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" Assuming that the input and output of the switch are
reasonably close in value (i.e., V4 Is small), we can
assume triode operation of the transistor

1
,LbnooxW/L(Vgs — VTH)
= For low R,,, we want:

= Large W, SmallL, Large Vg
" Issue: we need V¢ > Vq,

— Rch%



Impact of Charge Injection
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" Charge injection disturbs the tracked value due to
charge transfer that occurs from two key sources

= Overlap capacitance

= Caused by capacitive coupling of clock edge onto load
capacitor, C,

= Channel charge

» Caused by expelling the channel charge as device is
abruptly turned off




Calculation of Charge Injection Impact
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" Change in voltage due to overlap capacitance and
charge injection (for fast fall time on V(1))
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= where
dech = —CoaWL(Vys — V)

= —CoxWL(Vygr — Vin — Vrr)



Signal Dependence Versus Offset for Charge Injection
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" Qverall charge injection impact (from previous slide)
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Minimizing Charge Injection
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" Signal dependent charge injection is reduced by
= Lowering the size of the device (WL)
= Increasing C,

Each of the above leads to an unacceptable increase in R,,C,
(large L is especially problematic — it should be kept at minimum)

11



Adding a Dummy Device
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" Consider adding a dummy device, My, that has
half the width of the switching device, M,

= Use minimum length for both devices

" |n theory, both overlap cap impact and charge
Injection should be cancelled!

= In practice, this does not work so well due to poor clock
edge alignment, variable behavior of M; charge injection
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Using Complementary Switches
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" Cancels influence of overlap capacitance to some degree
" Worse for channel charge injection

= This leads to worse signal dependent charge injection
" Reduces switch resistance (this is very useful)

— Parallel combination of R, and R,
= Worst case: when V,, is in the middle of the supply range
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Bootstrapped Switches

Bootstrap
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Bootstrapping offers several nice benefits

T

= Increased gate drive (often above the supply voltage)
= Reduces R, while allowing a smaller switch size
= Constant voltage between the input and clock during the

tracking phase

= Greatly reduces signal dependent charge injection issues
" Bootstrapping backgate is also becoming common with

deep N-well processes

= Recent example: Brunsilius et. al., ISSCC 2011
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Buffered Track and Hold Circuit using Opamp
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® Provides several benefits

= Increases settling bandwidth to allow faster sampling
frequency

= Assuming parasitic cap, C,,, Is less than load cap, C,

= |ssue: we will see that we need a reasonable large
sampling capacitor for noise reasons

= Isolation of sensitive switch output from any
perturbations from the ADC (such as kickback from its
Internal switches)

" |ssue: adds additional offset voltage of the opamp
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Use Feedback Sampling to Mitigate Opamp Offset

D4(t) @, (t)

V. (1) f‘ -lJ—_- D,4(t) ‘ ‘ ‘ ‘ ‘ ‘
Cs

D,(t) & l - v () Pl ‘ ‘ ‘ ‘ ‘ ‘

_I_ out

! Vet T4 ——c, %) ‘ ‘ ‘ ‘ ‘ ‘

" Uses different placement of the sampling capacitor,
C,, between track and hold phases

= We will see how this can largely eliminate the impact of
opamp offset

" Such feedback sampling topologies often require
multi-phase clocks
= Key goal is to achieve non-overlapping ‘On’ times such

that current flow does not occur through multiple
switches at once
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First Consider Tracking Phase on Sampling Cap C,
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Now Consider Hold Phase on Sampling Cap C,
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Impact of opamp offset is cancelled out!
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Fully Differential Version of Feedback Sampler
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" Helps to cancel out the influence of charge injection
= Appears as common-mode noise source
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Influence of Thermal Noise on Sampling
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" CMOS switch adds noise during the tracking phase

= This noise is sampled as the switch is turned off at the
beginning of the hold phase
® Calculation of the variance (i.e. power) of the sampled
noise

= First determine the spectral density of the noise during
the tracking phase

= Integrate the spectral density to obtain the variance of
then noise
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Calculation of Noise Spectral Density (Double Sided)
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Spectral density at output (double sided):
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Calculation of Noise Variance
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Sampled noise variance depends only on the sample cap value!
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Summary

" The CMOS sampling circuit is a key element for many
systems

= Analog to digital conversion
= Switched capacitor filters (to be discussed in MIC513)

" Key issues for sampling circuits are
= Accuracy (i.e., offset, noise)
= Key insight: noise set by sample cap value
= Speed (i.e., setting time)
= Leakage
" Opamp feedback circuits are often combined with CMOS
sampling circuits
= Provide buffering and isolation of kickback from the circuit
that follows
= Introduce extra offset and noise
= Clever circuit topologies can largely eliminate opamp offset
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