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Outline of Lecture

 Basic CMOS sampling structure
 Feedback sampling
 Noise of CMOS sampling structure
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The Need for Sample and Hold Circuits

 Analog-to-digital converters (ADC) are key elements in 
allowing digital processors to interact with “real world” 
signals in the acoustic, RF, and optical domains

 Sample and hold circuits are often utilized to keep the 
input signal into the ADC constant while it is 
performing its conversion
- Key metrics:  sampling accuracy, sampling speed, hold 

time (while maintaining accuracy)
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Track and Hold Versus Sample and Hold

 Track and hold alternates between following and 
holding the input value

 Sample and hold can be created by cascading two 
track and hold circuits
- Similar to digital registers which are created by 

cascading two latches
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Track and Hold Based on a CMOS Switch

 CMOS transistors make nice switches
- Much better than bipolar devices since they do not have 

the issue of base charge storage
 Key performance issues

- Switch resistance
- Charge injection
- Leakage
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Impact of Switch Resistance

 Accurately following the input by the end of the 
tracking period is important in order to achieve an 
accurate hold value
- Switch resistance, Rch, and load capacitance, CL, form a 

lowpass filter with limited bandwidth
 Low Rch is desirable for better tracking behavior

 The cutoff frequency of the RC lowpass must be 
significantly higher than the frequency of Vclk(t)

6

t

Volts

Track and Hold

CL

Vout(t)Vin(t)

Vclk(t)

Vclk(t)

Vout(t)

Vin(t)

Rch



M.H. Perrott

Calculation of Switch Resistance

 Assuming that the input and output of the switch are 
reasonably close in value (i.e., Vds is small), we can 
assume triode operation of the transistor

- For low Rch, we want:
 Large W,  Small L,  Large Vgs

 Issue:  we need Vgs > VTH
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Impact of Charge Injection

 Charge injection disturbs the tracked value due to 
charge transfer that occurs from two key sources
- Overlap capacitance

 Caused by capacitive coupling of clock edge onto load 
capacitor, CL- Channel charge

 Caused by expelling the channel charge as device is 
abruptly turned off
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Calculation of Charge Injection Impact

 Change in voltage due to overlap capacitance and 
charge injection (for fast fall time on Vclk(t))

- where
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Signal Dependence Versus Offset for Charge Injection

 Overall charge injection impact (from previous slide)
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Minimizing Charge Injection

 Signal dependent charge injection is reduced by
- Lowering the size of the device (WL)
- Increasing CL
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Adding a Dummy Device

 Consider adding a dummy device, Mdummy, that has 
half the width of the switching device, M1- Use minimum length for both devices

 In theory, both overlap cap impact and charge 
injection should be cancelled!
- In practice, this does not work so well due to poor clock 

edge alignment, variable behavior of M1 charge injection
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Using Complementary Switches

 Cancels influence of overlap capacitance to some degree
 Worse for channel charge injection

- This leads to worse signal dependent charge injection
 Reduces switch resistance (this is very useful)

- Parallel combination of Rchp and Rchn

 Worst case:  when Vin is in the middle of the supply range
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Bootstrapped Switches

 Bootstrapping offers several nice benefits
- Increased gate drive (often above the supply voltage)

 Reduces Rch while allowing a smaller switch size
- Constant voltage between the input and clock during the 

tracking phase
 Greatly reduces signal dependent charge injection issues

 Bootstrapping backgate is also becoming common with 
deep N-well processes
- Recent example:  Brunsilius et. al., ISSCC 2011
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Buffered Track and Hold Circuit using Opamp

 Provides several benefits
- Increases settling bandwidth to allow faster sampling 

frequency
 Assuming parasitic cap, Cpar, is less than load cap, CL

 Issue: we will see that we need a reasonable large 
sampling capacitor for noise reasons

- Isolation of sensitive switch output from any 
perturbations from the ADC (such as kickback from its 
internal switches)

 Issue:  adds additional offset voltage of the opamp
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Use Feedback Sampling to Mitigate Opamp Offset

 Uses different placement of the sampling capacitor, 
Cs, between track and hold phases
- We will see how this can  largely eliminate the impact of 

opamp offset
 Such feedback sampling topologies often require 

multi-phase clocks
- Key goal is to achieve non-overlapping  ‘On’ times such 

that current flow does not occur through multiple 
switches at once
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First Consider Tracking Phase on Sampling Cap C1

 First calculate Vout

 We now calculate VCs as
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Now Consider Hold Phase on Sampling Cap C1

 Calculate Vout as

 Recall that VCs = Vin – Vref + Voff

18

Φ1d(t)

Φ1(t)

Φ2(t)

Vout

Voff

CL

Vin Φ1d(t)

Cs

Vref
Φ2(t)

Φ1(t)

K

VCs

Vout = K(Vref − (Vout − VCs+ Voff ))

⇒ Vout =
K

K +1
(Vref+VCs−Voff ) ≈ Vref+VCs−Voff

⇒ Vout ≈ Vref + Vin − Vref + Voff − Voff = Vin

Impact of opamp offset is cancelled out!



M.H. Perrott

Fully Differential Version of Feedback Sampler

 Helps to cancel out the influence of charge injection
- Appears as common-mode noise source
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Influence of Thermal Noise on Sampling

 CMOS switch adds noise during the tracking phase
- This noise is sampled as the switch is turned off at the 

beginning of the hold phase
 Calculation of the variance (i.e. power) of the sampled 

noise
- First determine the spectral density of the noise during 

the tracking phase
- Integrate the spectral density to obtain the variance of 

then noise
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Calculation of Noise Spectral Density (Double Sided)

 Spectral density at output (double sided):

- Where

 A useful fact
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Calculation of Noise Variance

 Calculation of noise variance

- Where
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Summary

 The CMOS sampling circuit is a key element for many 
systems
- Analog to digital conversion
- Switched capacitor filters (to be discussed in MIC513)

 Key issues for sampling circuits are
- Accuracy (i.e., offset, noise)

 Key insight:  noise set by sample cap value
- Speed (i.e., setting time)
- Leakage

 Opamp feedback circuits are often combined with CMOS 
sampling circuits
- Provide buffering and isolation of kickback from the circuit 

that follows
- Introduce extra offset and noise

 Clever circuit topologies can largely eliminate opamp offset


