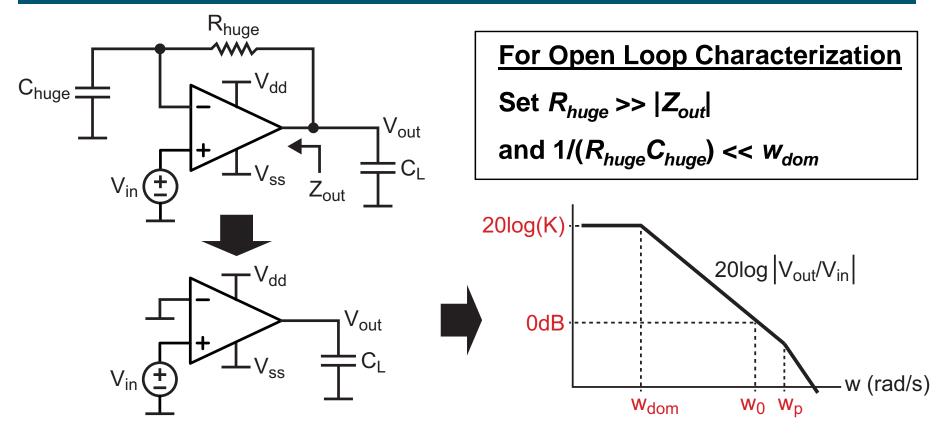
Analysis and Design of Analog Integrated Circuits Lecture 18

Key Opamp Specifications

Michael H. Perrott April 8, 2012

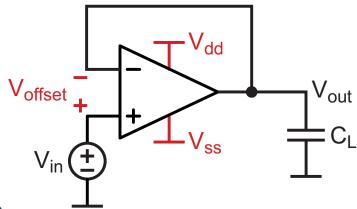
Copyright © 2012 by Michael H. Perrott All rights reserved.

Recall: Key Specifications of Opamps (Open Loop)



- DC small signal gain: K
- Unity gain frequency: w₀
- **Dominant pole frequency:** w_{dom}
- Parasitic pole frequencies: w_p (and higher order poles)
- Output swing (max output range for DC gain > K_{min})

Recall: Key Specifications of Opamps (Closed Loop)



- Offset voltage
- Settling time (closed loop bandwidth)
- Input common mode range
- Equivalent Input-Referred Noise
- Common-Mode Rejection Ratio (CMRR)

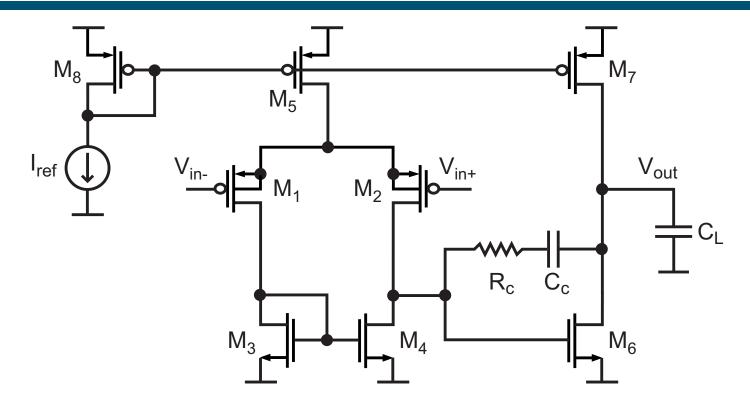
$$CMRR = \left(\frac{\delta V_{offset}}{\delta V_{in}}\right)^{-1}$$

Power Supply Rejection Ratio (PSRR)

$$PSRR^{+} = \left(\frac{\delta V_{offset}}{\delta V_{dd}}\right)^{-1} \qquad PSRR^{-} = \left(\frac{\delta V_{offset}}{\delta V_{ss}}\right)^{-1}$$

Perrott 3

Basic Two Stage CMOS Op Amp

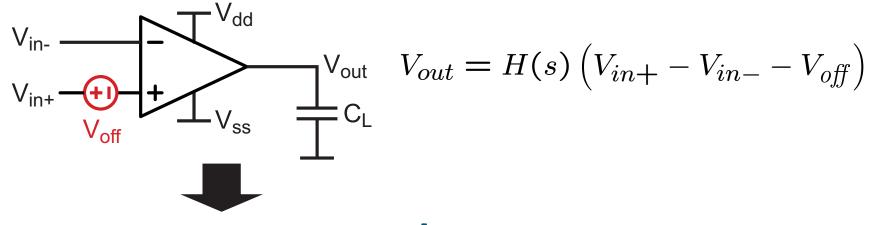


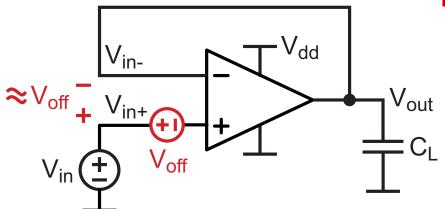
- This is a common "workhorse" opamp for medium performance applications
- Provides a nice starting point to discuss various CMOS opamp design issues
- Starting assumptions: $W_1/L_1 = W_2/L_2$, $W_3/L_3 = W_4/L_4$

Key Specifications Discussed In This Lecture

- Systematic offset voltage
- CMRR
- PSRR+ and PSRR-
- Input-referred voltage noise
- Slew rate

A Closer Look at Offset Voltage





Assume:

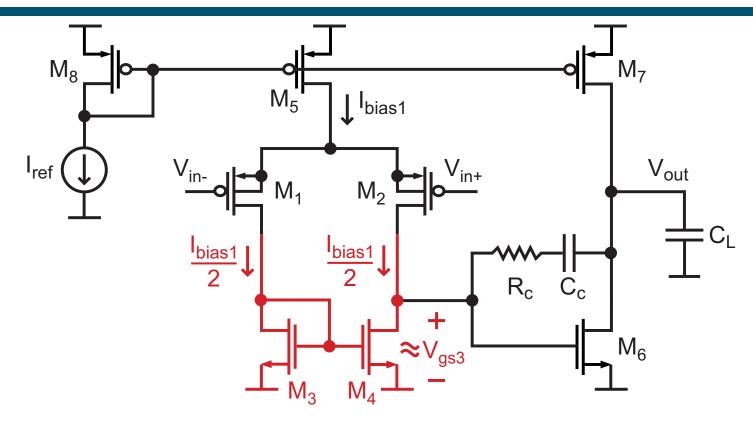
- Input to opamp is a DC signal
- Amplifier is not saturated
- DC gain of amplifier is large

$$V_{out} = K \left(V_{in+} - V_{in-} - V_{off} \right)$$

$$\Rightarrow V_{in+} - V_{in-} = V_{off} + V_{out}/K \approx V_{off}$$

Two sources of offset: systematic and random

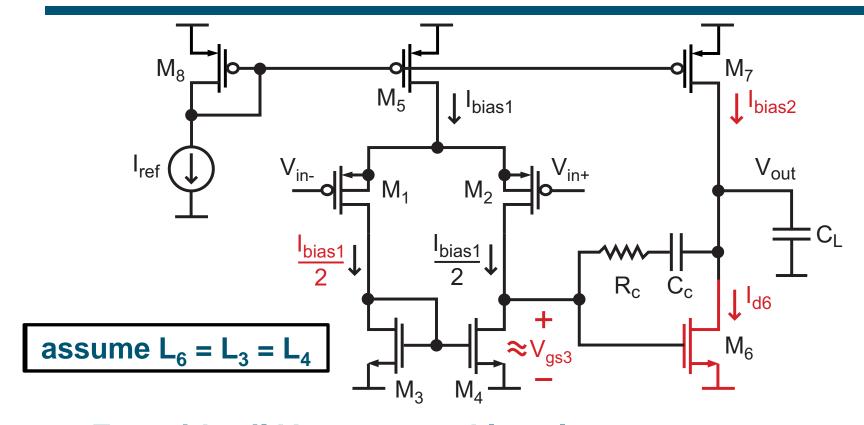
Systematic Offset: First Stage Analysis



- For zero systematic offset we want V_{out} to be at roughly mid-rail assuming V_{in+} = V_{in-}
 - V_{in+} = V_{in-} leads to equal currents in M₃/M₄
 - Equal currents and equal V_{gs} for M₃/M₄ leads to:

$$V_{ds4} = V_{ds3} = V_{gs3}$$

Key Constraints To Achieve Zero Systematic Offset

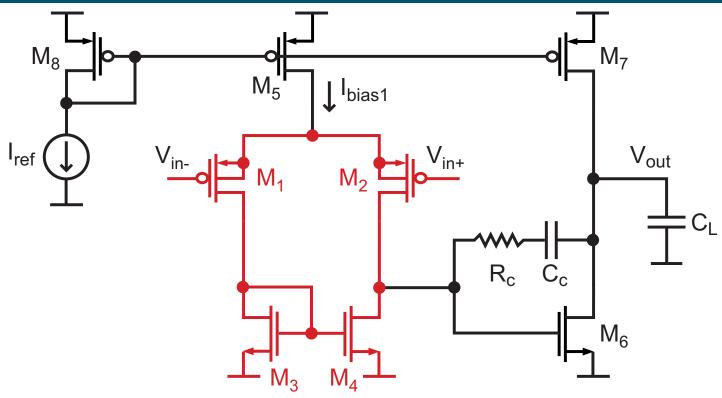


For mid-rail V_{out}, we need I_{d6} = I_{bias2}

$$\Rightarrow I_{d6} = \frac{1}{2} \mu_n C_{ox} \frac{W_6}{L_6} \left(V_{gs3} - V_{TH} \right)^2 = I_{bias2}$$

Also:
$$\frac{1}{2}\mu_n C_{ox} \frac{W_3}{L_3} \left(V_{gs3} - V_{TH} \right)^2 = \frac{I_{bias1}}{2} \Rightarrow \frac{W_6}{2W_3} = \frac{I_{bias2}}{I_{bias1}} = \frac{W_7}{W_5}$$

Key Common-Mode Rejection (CMRR) Observations



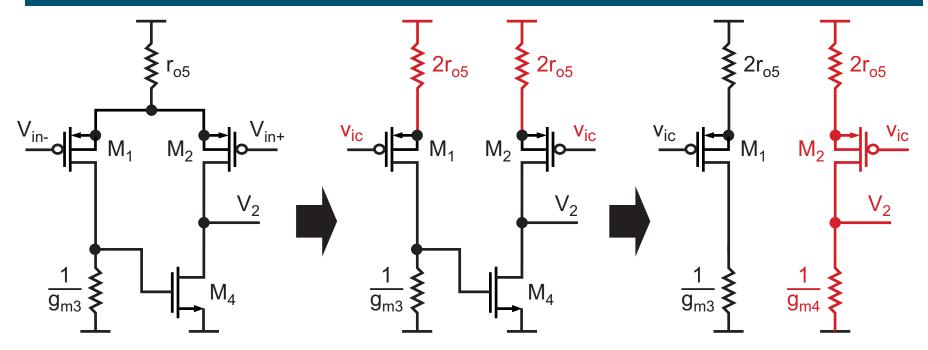
CMRR defined as a_{vd}/a_{vc}, where

$$a_{vd} = a_{vd1}a_{vd2} \qquad a_{vc} = a_{vc1}a_{vd2}$$

Inspection of the above reveals that CMRR is determined by the first stage

$$CMRR = \frac{a_{vd1}a_{vd2}}{a_{vc1}a_{vd2}} = \frac{a_{vd1}}{a_{vc1}} = CMRR_1$$

Common Mode Gain and Resulting CMRR



Differential gain was derived in Lecture 17

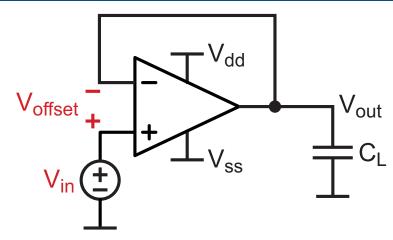
$$a_{vd1} = g_{m1} (r_{o2} || r_{o4})$$

Common-mode gain is calculated from the above as

$$a_{vc1} = \frac{1/g_{m4}}{1/g_{m2} + 2r_{o5}} \approx \frac{1}{2g_{m4}r_{o5}}$$

$$\Rightarrow CMRR = \frac{a_{vd1}}{a_{vc1}} = 2g_{m1}(r_{o2}||r_{o4})g_{m4}r_{o5}$$

Characterizing CMRR with Changes in Offset Voltage



Consider V_{in} as a common-mode signal which has an open loop impact on V_{out} as

$$\Delta V_{out} = a_{vc} \Delta V_{in}$$

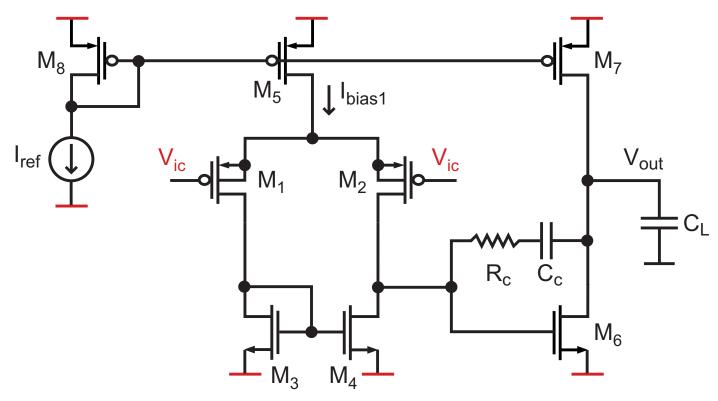
However, the closed loop configuration above tries to keep V_{in+} = V_{in-} subject to finite differential gain a_{vd}

$$V_{out} = a_{vd}(V_{in} - V_{out}) = a_{vd}V_{offset}$$

 $\Rightarrow \Delta V_{offset} = \frac{1}{a_{vd}} \Delta V_{out} = \frac{a_{vc}}{a_{vd}} \Delta V_{in}$
 $\Rightarrow \frac{\Delta V_{offset}}{\Delta V_{in}} = \frac{a_{vc}}{a_{vd}} = (CMRR)^{-1}$

M.H. Perrott ava

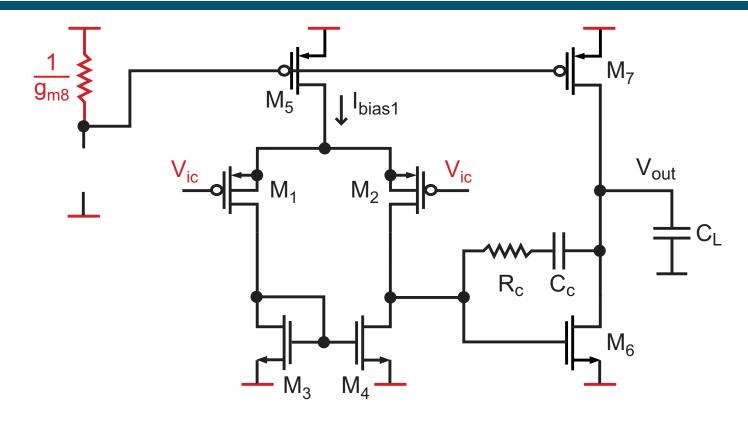
Power Supply Rejection Ratio (PSRR)



- We now consider the impact of positive and negative supply variation on the output of the amplifier
 - Key assumption: V_{in+} = V_{in-} = V_{ic}
- Definitions:

$$PSRR^{+} = \frac{a_{vd}}{a^{+}} \qquad PSRR^{-} = \frac{a_{vd}}{a^{-}}$$

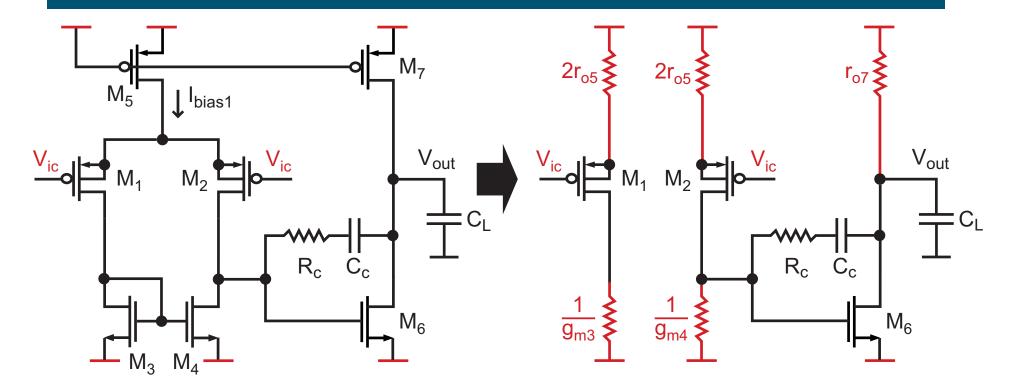
Simplification of Current Mirror



- Replace current reference and diode connected device M₈ with their small signal models
 - We see that positive and negative supply variations have no impact on V_{gs} of M₅ and M₇

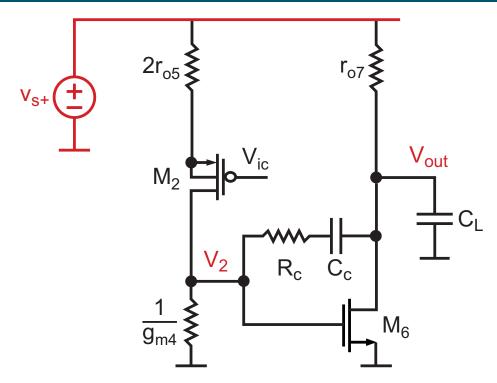
 We can ignore M₈ and current reference in our PSRR analysis

Further Simplifications for PSRR Calculations



- Observe that positive and negative supply variations have equal impact on both sides of the differential pair
 - We can use common-mode analysis for the first stage

Calculation of PSRR+ At Low Frequencies



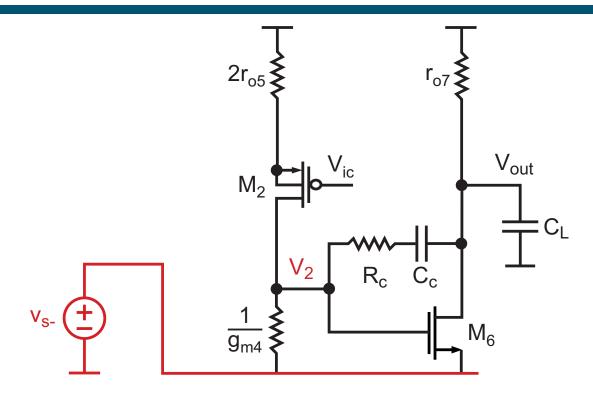
Calculation of impact of V_{s+} on V_{out}

$$V_{out} = \frac{r_{o6}}{r_{o6} + r_{o7}} V_{s+} + g_{m6}(r_{o6}||r_{o7}) \left(\frac{1}{2g_{m4}r_{o5}}\right) V_{s+}$$

$$\Rightarrow a_{+} = \frac{V_{out}}{V_{s+}} \approx 1$$

$$\Rightarrow PSRR^{+} = \frac{a_{vd}}{a_{v+}} \approx a_{vd} = g_{m1}(r_{o2}||r_{o4})g_{m6}(r_{o6}||r_{o7})$$

Calculation of PSRR At Low Frequencies



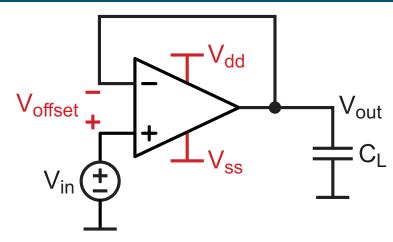
Calculation of impact of V_s on V_{out}

$$V_{out} \approx \frac{r_{o7}}{r_{o6} + r_{o7}} V_{s-} + g_{m6}(r_{o6}||r_{o7}) \left(\frac{1}{g_{m4}(g_{m2}r_{o2})2r_{o5}}\right) V_{s-}$$

$$\Rightarrow a_{-} = \frac{V_{out}}{V_{s-}} \approx 1$$

$$\Rightarrow PSRR^{-} = \frac{a_{vd}}{a_{v-}} \approx a_{vd} = \boxed{g_{m1}(r_{o2}||r_{o4})g_{m6}(r_{o6}||r_{o7})}$$

Characterizing PSRR with Changes in Offset Voltage



Consider V_{dd} as a common-mode signal which has an open loop impact on V_{out} as

$$\Delta V_{out} = a_{+} \Delta V_{dd}$$

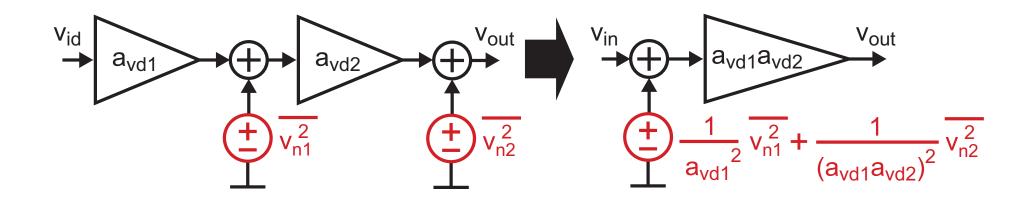
However, the closed loop configuration above tries to keep V_{in+} = V_{in-} subject to finite differential gain a_{vd}

$$V_{out} = a_{vd}(V_{in} - V_{out}) = a_{vd}V_{offset}$$

$$\Rightarrow \Delta V_{offset} = \frac{1}{a_{vd}}\Delta V_{out} = \frac{a_{+}}{a_{vd}}\Delta V_{dd}$$

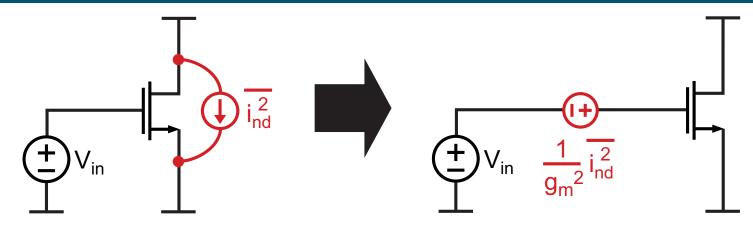
$$\Rightarrow \frac{\Delta V_{offset}}{\Delta V_{dd}} = \frac{a_{+}}{a_{vd}} = \left(PSRR^{+}\right)^{-1} \text{ (Similar for PSRR-)}$$

Noise Analysis for a Two Stage Opamp



- Each opamp stage will contribute noise
 - Typically the spectral density of the noise will be of the same order at each stage
- Input referral of the noise reveals that the second stage noise will have much less impact than the first stage noise
 - Input-referred noise calculations of an opamp need only focus on the first stage

Input-Referral of MOS Device Noise



Transistor drain current noise:

$$\overline{i_{nd}^2} = 4kT\frac{\gamma}{\alpha}g_m\Delta f + \frac{K_f}{f}\frac{g_m^2}{WLC_{ox}^2}\Delta f \qquad g_{ds0} = \frac{g_m}{\alpha}$$

Thermal noise

1/f noise

Input-referred voltage noise:

$$\overline{v_{ni}^2} = 4kT \frac{\gamma}{\alpha} \frac{1}{g_m} \Delta f + \frac{K_f}{f} \frac{1}{WLC_{ox}^2} \Delta f$$

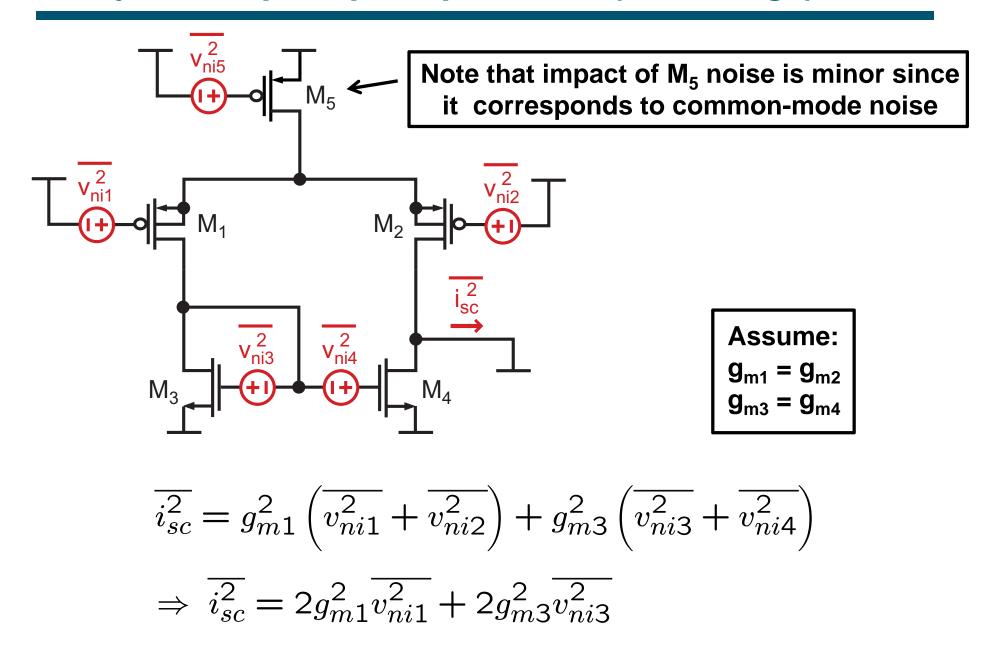
Thermal noise

1/f noise

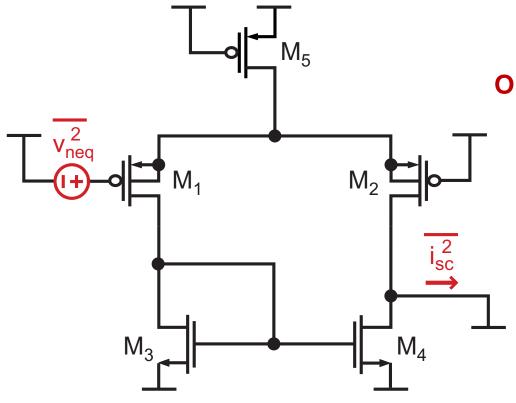
Impact of thermal versus 1/f noise depends on g_m

Note:

Analysis of Op Amp Output Noise (First Stage)



Determining Input-Referred Noise



Output noise due to equivalent input-referred noise:

$$\overline{i_{sc}^2} = g_{m1}^2 \overline{v_{neq}^2}$$

Assume:

$$g_{m1} = g_{m2}$$

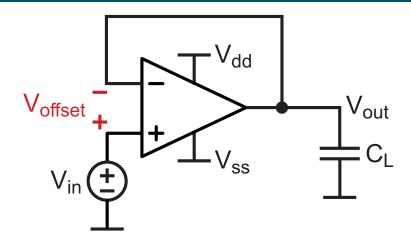
$$g_{m3} = g_{m4}$$

Output noise due to individual devices (Slide 20):

$$\overline{i_{sc}^2} = 2g_{m1}^2 \overline{v_{ni1}^2} + 2g_{m3}^2 \overline{v_{ni3}^2} = g_{m1}^2 \overline{v_{neq}^2}$$

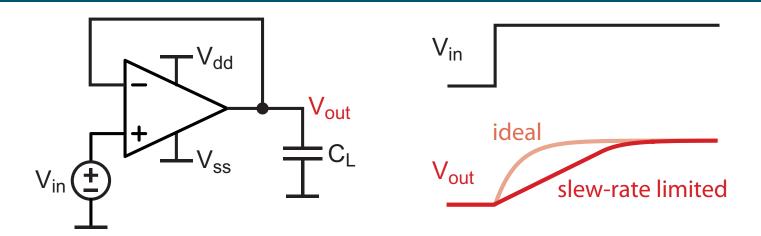
$$\overline{v_{neq}^2} = 2\overline{v_{ni1}^2} + 2\left(\frac{g_{m3}}{g_{m1}}\right)^2 \overline{v_{ni3}^2} \qquad \Longrightarrow \begin{array}{c} \text{Want } g_{m1} > g_{m3} \\ \text{for low noise} \end{array}$$

Characterizing Input-Referred Noise



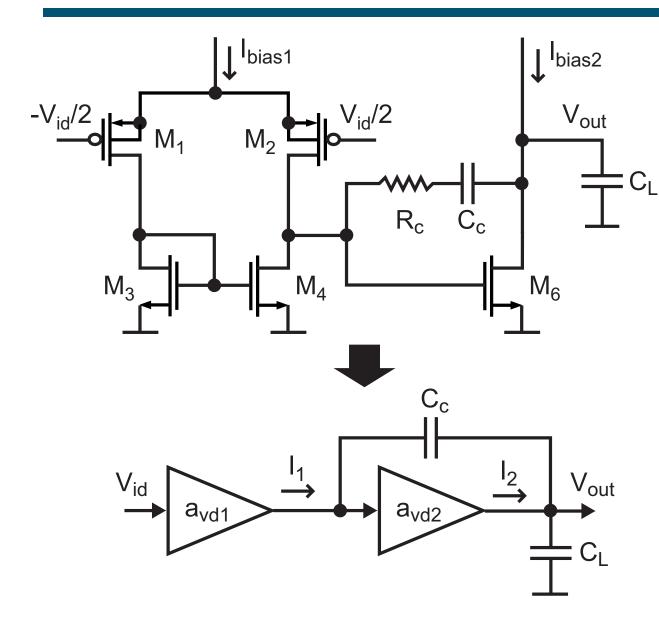
- Placing the amplifier within unity gain feedback configuration causes the overall output noise of the amplifier to become referred to the input
 - We can now examine the low frequency content of the input-referred noise by simply probing the noise of V_{out}

Recall: Slew Rate Issues for Opamps



- Output currents of practical opamps have max limits
 - Impacts maximum rate of charging or discharging load capacitance, C_L
 - For large step response, this leads to the output lagging behind the ideal response based on linear modeling
 - We refer to this condition as being slew-rate limited
- Where slew-rate is of concern, the output stage of the opamp can be designed to help mitigate this issue
 - Will lead to extra complexity and perhaps other issues

Key Observations for Slew Rate Calculations



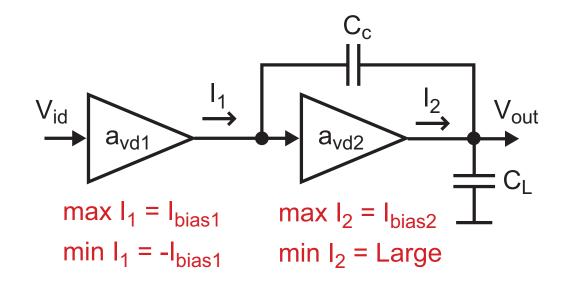
Current Limits

- First stage

 - $\blacksquare \quad Min I_1 = -I_{bias1}$
- Second stage

 - $\blacksquare Min I_2 = Large$

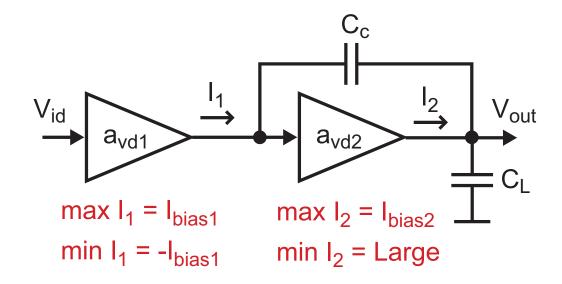
Slew Rate Analysis (First Stage Limits)



- Slew rate refers to maximum voltage slope at output
 - Impact of current limits in first stage:

$$V_{out} = -\frac{1}{C_c} \int I_1 dt \Rightarrow \frac{dV_{out}}{dt} \Big|_{max} = -\frac{I_1}{C_c} \Big|_{max} = \frac{I_{bias1}}{C_c}$$
$$\frac{dV_{out}}{dt} \Big|_{min} = -\frac{I_1}{C_c} \Big|_{min} = -\frac{I_{bias1}}{C_c}$$

Slew Rate Analysis (Second Stage Limits)



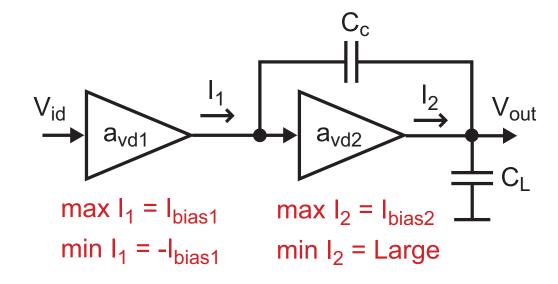
- Impact of current limits in second stage
 - Maximum slope at the output:

$$\left. \frac{dV_{out}}{dt} \right|_{max} = \frac{I_{bias2}}{C_c + C_L}$$

Minimum slope at the output:

$$\left. rac{dV_{out}}{dt}
ight|_{min} =$$
 Large

Slew Rate Analysis (Overall)



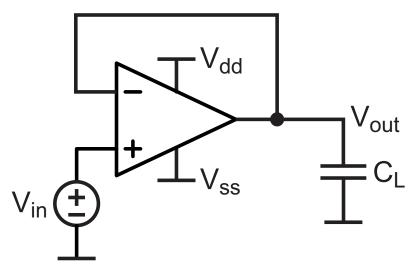
Maximum slope at the output:

$$\left. \frac{dV_{out}}{dt} \right|_{max} = \min\left(\frac{I_{bias1}}{C_c}, \frac{I_{bias2}}{C_c + C_L} \right)$$

Minimum slope at the output:

$$\left. \frac{dV_{out}}{dt} \right|_{min} = \frac{-I_{bias1}}{C_c}$$

Impact of Slew Rate



Consider the closed loop, unity gain configuration above with a sine wave input

$$V_{in} = A\sin(wt)$$

Note: the max slope of the input depends on A and w

$$\frac{dV_{in}}{dt} = Aw\cos(wt) \quad \Rightarrow \quad \frac{dV_{out}}{dt}\Big|_{max} = Aw$$

Slew rate limits the maximum frequency that the amplifier can track

Summary

- Opamp design must take into consideration many different specifications
- Today we covered
 - Systematic offset voltage
 - CMRR
 - PSRR+ and PSRR-
 - Input-referred voltage noise
 - Slew rate