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Recall: Key Specifications of Opamps (Open Loop)
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For Open Loop Characterization
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DC small signal gain: K

Unity gain frequency: w,

Dominant pole frequency: wy,,

Parasitic pole frequencies: w, (and higher order poles)
Output swing (max output range for DC gain > K_..)
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Recall: Key Specifications of Opamps (Closed Loop)
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" Offset voltage

" Settling time (closed loop bandwidth)

" |nput common mode range

" Equivalent Input-Referred Noise

" Common-Mode Rejection Ratio (CMRR)
CMRR — <5V0ﬁset>_1

0Vin
" Power Supply Rejection Ratio (PSRR)

PSRR+: 5V0ﬁset -1 PSRR~ — 5V0ﬁset -1




Basic Two Stage CMOS Op Amp
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" This is acommon “workhorse” opamp for medium
performance applications

" Provides a nice starting point to discuss various
CMOS opamp design issues

" Starting assumptions: W,/L, = W,/L,, W,/L; =W,/L,



Key Specifications Discussed In This Lecture

" Systematic offset voltage

" CMRR

" PSRR*and PSRR-

" |nput-referred voltage noise
" Slew rate



A Closer Look at Offset Voltage
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in+ v Ve CL
" Assume:
Vi \‘Qd = Input to opamp is a DC signal
XVoit T a V..  Amplifier is not saturated
@ "‘/_L/ c, — DCgain of amplifier is large
Vin 9 VOﬁ -
Vout = K (V'm-l— — Vin— — Voﬁ)
= Vingt — Vin— = off + Vout/ K ~ Voﬁ

‘ Two sources of offset: systematic and random ‘




Systematic Offset: First Stage Analysis
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" For zero systematic offset we want V
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roughly mid-rail assuming V,,, = V,,.
= V,.=V,, leads to equal currents in M,/M,
— Equal currents and equal V4 for M;/M, leads to:

Visa = Vgsz =

Vgs3
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Key Constraints To Achieve Zero Systematic Offset
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Key Common-Mode Rejection (CMRR) Observations
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" CMRR defined as a 4/a,., where
Ayd = QpdlAyd2 Ayec = AyclAyd?2

" |nspection of the above reveals that CMRR is
determined by the first stage

CMRR — avdlade — a”Ud]. — OMRR]_
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Common Mode Gain and Resulting CMRR
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= Differential gain was derived in Lecture 17

Aydl = Im1 (T02]|704)
" Common-mode gain is calculated from the above as

Ayl = 1/9ma - 1
e 1/gm2 + 2705  29maTos

Ayd1l
— OMRR = a” : =129m1(ro2||704) 9maros
vC
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Characterizing CMRR with Changes in Offset Voltage
; Vout
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" Consider V,, as a common-mode signal which has an
open loop impact on V_, as

AVt = achVm

" However, the closed loop configuration above tries to
keep V,,, = V,,. subject to finite differential gain a4

Vout = ayg(Vin — Vout) = avdvoﬁset

1
= Avoﬁset = —AVyy = %AV;,
AV Ayd Ayd
= T aliset _ T — (oMRR) 1

Avm Ayd
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Power Supply Rejection Ratio (PSRR)
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" We now consider the impact

~wdb T

of positive and negative

supply variation on the output of the amplifier
= Key assumption: V.=V, =V

® Definitions:

+ — %vd
PSRRT = —%

PSRR— = 2vd
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Simplification of Current Mirror
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" Replace current reference and diode connected
device Mg with their small signal models

= We see that positive and negative supply variations
have no impact on V4 of Mg and M,

= We can ignore Mg and current reference in our PSRR

analysis
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Further Simplifications for PSRR Calculations
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" Observe that positive and negative supply variations
have equal impact on both sides of the differential pair

= We can use common-mode analysis for the first stage
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Calculation of PSRR* At Low Frequencies

® Calculation of impact of V_,on V
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Calculation of PSRR- At Low Frequencies
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® Calculation of impact of V_on V

out

To7 1
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Characterizing PSRR with Changes in Offset Voltage
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" Consider V, 4 as acommon-mode signal which has an
open loop impact on V_, as

" However, the closed loop configuration above tries to
keep V,,, = V,,. subject to finite differential gain a4

Vout = ayg(Vin — Vout) = avdvoﬁset

o AV, = —AVyw = ZEAY,
offset — out — dd
AV Ayd Ayd
—1
- offset _ 2+ _ (PSRR"') (Similar for PSRR")

AVyq Ay
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Noise Analysis for a Two Stage Opamp
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" Each opamp stage will contribute noise
= Typically the spectral density of the noise will be of the
same order at each stage
" |nput referral of the noise reveals that the second
stage noise will have much less impact than the first
stage noise

= Input-referred noise calculations of an opamp need only
focus on the first stage
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Input-Referral of MOS Device Noise

® Transistor drain current noise:

K 5 Note:
2 Y S 9m __ 9m
12, = 4kT —g, A ' A = —
nd agm I A 7 WLC(%U f dds0O o
Thermal noise 1/f noise
" |nput-referred voltage noise:
— 1 K 1
v2. =4k = Af + T ~Af
agm f WLCE,
Thermal noise 1/f noise

Impact of thermal versus 1/f noise depends on g, ‘ .




Analysis of Op Amp Output Noise (First Stage)
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Determining Input-Referred Noise

Output noise due to equivalent
Input-referred noise:
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Assume;:

gml = gm2
gm3 gm4

" Qutput noise due to individual devices (Slide 20):
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Want gp; > gms
for low noise
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Characterizing Input-Referred Noise

" Placing the amplifier within unity gain feedback
configuration causes the overall output noise of the
amplifier to become referred to the input

= We can now examine the low frequency content of the
Input-referred noise by simply probing the noise of V_;
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Recall: Slew Rate Issues for Opamps

\hn

\/out
ideal

Vin 1 out slew-rate limited

" Qutput currents of practical opamps have max limits

= Impacts maximum rate of charging or discharging load
capacitance, C,

= For large step response, this leads to the output lagging
behind the ideal response based on linear modeling

= \We refer to this condition as being slew-rate limited
" Where slew-rate is of concern, the output stage of the
opamp can be designed to help mitigate this issue
= Will lead to extra complexity and perhaps other issues
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Key Observations for Slew Rate Calculations
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Current Limits

" First stage

— Max Il = Ibiasl

| = Mi -
2 Vout Min Il - Ibiasl

" Second stage
~ Max I2 = Ibiasz
= Min |, = Large
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Slew Rate Analysis (First Stage Limits)

max I1 - Ibias1
min |1 - 'Ibias1

Vout
O—>

— C|_
max |2 = IbiasZ —
min |, = Large

" Slew rate refers to maximum voltage slope at output

= Impact of current limits in first stage:

1
V. =——/I dit =
out C. 1

dVout

dVout
dt

max

min

_ﬂ — Thiast
Celmaz Ce
_ﬂ — _ Lyigst
Celmin Ce
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Slew Rate Analysis (Second Stage Limits)

éf
l:
I
1

max Iy = lpias1 max Iy = lpiasy —
min I = -lia81 min |, = Large

" |Impact of current limits in second stage
= Maximum slope at the output:

dVOut — Ibz'as?
dt max Cc ‘|‘ CL
= Minimum slope at the output:
dV,
out — Large
dt |min
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Slew Rate Analysis (Overall)

éf
l:
I
1

max |1 - Ibias1 max |2 -

lhiasy —-

min I = -lia81 min |, = Large

" Maximum slope at the output:

= min
max

" Minimum slope at the output:
dVout

dVout
dt

1 biasl I bias2

CC ’CC_I_CL

_ _Ibiasl

dt

min Cc

|
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Impact of Slew Rate

® Vout

——C_

Vin i)

" Consider the closed loop, unity gain configuration
above with a sine wave input

Vi, = Asin(wt)

" Note: the max slope of the input depends on A and w

dV: d
M — Awcos(wt) = Vout
dt dt |maz

= Aw

Slew rate limits the maximum frequency that the amplifier can track
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Summary

" Opamp designh must take into consideration many
different specifcations

" Today we covered
= Systematic offset voltage
= CMRR
= PSRR* and PSRR-
= Input-referred voltage noise
= Slew rate



