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Opamps Are Basic Analog Building Blocks

 Enable active filters
- Can achieve arbitrary pole/zero placement using only 

capacitor/resistor networks around the opamp
 Allow accurate voltage to current translation
 Provide accurate charge transfer between capacitors

- Extremely useful for switched capacitor circuits used in 
analog-to-digital converters and discrete-time analog 
filters

2

C1

R1
Vin

Vref

Vout

C2

Vin

Vref

Vout
C1

Vref

Rref

Iref

Analog Filters Current References Switched Capacitor Circuits



M.H. Perrott 3

Key Specifications of Opamps (Open Loop)

 DC small signal gain:  K
 Unity gain frequency:  w0

 Dominant pole frequency:  wdom

 Parasitic pole frequencies:   wp (and higher order poles)
 Output swing (max output range for DC gain > Kmin)
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Key Specifications of Opamps (Closed Loop)

 Offset voltage
 Settling time (closed loop bandwidth)
 Input common mode range
 Equivalent Input-Referred Noise
 Common-Mode Rejection Ratio (CMRR)

 Power Supply Rejection Ratio (PSRR)
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Slew Rate Issues for Opamps

 Output currents of practical opamps have max limits
- Impacts maximum rate of charging or discharging load 

capacitance, CL- For large step response, this leads to the output lagging 
behind the ideal response  based on linear modeling
 We refer to this condition as being slew-rate limited

 Where slew-rate is of concern, the output stage of the 
opamp can be designed to help mitigate this issue
- Will lead to extra complexity and perhaps other issues
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Basic Two Stage CMOS Op Amp

 This is a common “workhorse” opamp for medium 
performance applications

 Provides a nice starting point to discuss various 
CMOS opamp design issues

 Starting assumptions:  W1/L1 = W2/L2, W3/L3 = W4/L4
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First Stage Analysis

 Derive two port model assuming differential input:
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Derivation of Rout1 (Incorrect Approach)

 Application of Thevenin analysis seems to imply that

- Why is this incorrect?
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Derivation of Rout1 (Correct Approach)

 Correct approach includes the impact of the current 
mirror feedback
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Derivation of Gm1

 For differential input, we can approximate the source 
of M1 and M2 as being at incremental ground
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 For differential input, we can 
simplify the input capacitance 
calculation through the steps 
shown at the right 
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Second Stage Analysis

 Two port model derivation is straightforward
- This is a common source amplifier

12

Ibias2

Rout2Gm2V2Zin2V2vin2 vout

Second Stage Two-Port Model
M7

M6

Vout

CL

Vin2

CL

Gm2 = gm6

Rout2 = ro6||ro7

Zin2 =
1

sCgs6



M.H. Perrott

Overall Opamp Model

 Overall transfer function

- DC gain

- Poles

 In general, wp2 << wp1 since CL >> Cgs6
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Consider The Dominant Pole To Be wp2

 At frequencies >> wp2
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Key Issue for Achieving Adequate Phase Margin

 To achieve wp1 > w0

- We need a very large value of CL relative to Cgs6

 This will generally be impractical!
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Pole Splitting Using a Compensation Capacitor

 Consider placing capacitor Cc across the second stage
- Load capacitance seen by stage 1 becomes roughly

 This large Miller capacitance now causes wp1 to become 
dramatically lower such that it forms the dominant pole

 We will see that wp2 actually increases in frequency!
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Pole Splitting Using a Compensation Capacitor (Part 2)

 Assuming wp1 forms the dominant pole, we can 
approximate Cc as a short when calculating wp2

- Note:  we must have Cc >> Cgs6 for this to be accurate
 The inclusion of capacitor Cc has led to wp2 

increasing in frequency
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Impact of Pole Splitting using Compensation Cap

 Pole splitting allows the dominant pole frequency to 
be dramatically decreased and the main parasitic pole 
to be dramatically increased
- We can achieve higher unity gain frequency with 

improved phase margin and with reasonable area
18

Vout/Vid

w (rad/s)

1

20log

20log(gm1(ro2||ro4)gm6(ro6||ro7))

(ro6||ro7)CL
wp2 =

1
(ro2||ro4)Cgs6

wp1 =

1
(ro2||ro4)gm6(ro6||ro7)Cc

wp1 = wp2 = Cgs6+CL

gm6



M.H. Perrott

Unity Gain Frequency with Compensation Cap

 At frequencies >> wp1
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Key Constraints for Achieving Adequate Phase Margin

 To achieve wp2 > w0

- Note:  we must have Cc >> Cgs6 for this to be accurate
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More Accurate Calculations Related to Phase Margin

 To achieve wp2 > w0
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A More Accurate Transfer Function Model
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causes potential stability issues
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Plotting the Magnitude of a RHP Zero

 Plot the magnitude response of right half plane wz

- For w << |wz|:  

- For w >> |wz|:    
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Plotting the Phase of a RHP Zero

 Plot the phase response of right half plane wz

- For w << |wz|:  

- For w = |wz|:

- For w >> |wz|:    
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Phase Margin Degradation Due to RHP Zero

 Since the RHP zero adds negative phase (similar to 
pole), it reduces phase margin
- We want:

 This is not a desirable constraint
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Adding a Compensation Resistor
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 RHP zero effectively 
removed if Rc = 1/gm6

 Improved phase 
margin possible with 
Rc > 1/gm6- See Johns&Martin, 

pp. 242-244
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Implementing Rc with a Triode Device

 More compact implementation than a poly resistor
 Triode channel resistance can somewhat track 1/gm6

across process and temperature variations
 Key issue:  supply sensitivity

- See pp. 246-248 of Johns&Martin for solutions to this issue 
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Calculations for Triode Compensation Resistor

 Triode resistance calculated as
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Summary

 Basic two-stage CMOS opamp is a workhorse for many 
moderate performance analog applications
- Relatively simple structure with reasonable performance

 Key issue:  two-stages lead to two poles that are 
relatively close to each other
- This leads to very poor phase margin unless very large 

CL is used
 Inclusion of a compensation capacitor across the 

second stage leads to pole splitting such that stable 
performance can be achieved with reasonable area
- A compensation resistor is also desirable to help 

eliminate the impact of a RHP zero that occurs due to 
compensation

We will use the basic two stage CMOS opamp structure
to explore various opamp specifications in the next lecture


