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Recall Frequency Domain View of Random Process

 It is valid to take 
the FFT of a 
sequence from 
a given trial

 However, notice 
that the FFT 
result changes 
across trials
- Fourier 

Transform of a 
random 
process is 
undefined !

- We need a 
new tool 
called spectral 
analysis
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Expectation of a Random Variable

 The expectation of random variable y is defined as

- We see that:

- In the case where y = 0 (i.e., the mean of y is 0)

 E(y2) is called the second moment of random variable y
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E(y) =

Z ∞

−∞
yfy(y)dy

E(y) =

Z ∞

−∞
yfy(y)dy = μy

E((y − μy)
2) =

Z ∞

−∞
(y − μy)

2fy(y)dy = σ2y

E(y2) = E((y − μy)
2) = σ2y
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Independence of Random Variables

 Consider two random variables x and y
- x and y are said to be independent if and only if

 Where f(x,y) is the joint probability distribution of x and y
- which implies

 The above relationship is also true under a less strict 
condition called linear independence

 If x and y are zero mean, then E(xy) = 0 implies that x 
and y are uncorrelated
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E(xy) =

Z ∞

−∞
xyf(x, y)dxdy =

Z ∞

−∞
xf(x)dx

Z ∞

−∞
yf(x)dy

f(x, y) = f(x)f(y)

⇒ E(xy) = E(x)E(y)
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Autocorrelation and Spectral Density (Discrete-Time)

 Assume a zero mean, stationary random process x[n]:
- The autocorrelation of x[n] is defined as:

 Note that:

- The power spectral density of random process x[n] is 
defined as

 Note that  = fT, where f is frequency (in Hz) and T is the 
sample period of the process (in units of seconds)

 Power spectral density of x[n] is essentially the (Discrete-
Time) Fourier Transform of the autocorrelation of x[n]

5

Rxx[m] = E(x[n] · x[n+m])

Sx(λ) =

∞X
m=−∞

Rxx[m]e
−j2πλm

Rxx[0] = E(x
2[n]) = σ2x
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Implications of Independence (Discrete-Time)

 If the samples of a zero mean random process, x[n], 
are independent of each other, this implies

 The corresponding power spectral density is then 
calculated as

- This is a known as a white random process, whose 
spectral density is flat across all frequencies
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Rxx[m] = E(x[n]x[n+m])

=

½
E(x2[n]) = σ2x, m = 0
E(x[n])E(x[n+m]) = 0, m 6= 0

⇒ Sx(λ) =

∞X
m=−∞

Rxx[m]e
−j2πλm = σ2x
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Understanding White Random Processes

 Independence between 
samples implies that previous 
samples provide no benefit in 
trying to predict the value of 
the current sample

 For Gaussian white processes, 
the best we can do is use the 
Gaussian PDF to determine the 
probability of a sample being 
within a given range
- Variance of the process is a 

key parameter 7
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Spectral Density of a White Process (Discrete-Time)

 The spectral density of a white process is well defined
- This is in contrast to the FFT of a white process, which varies 

between different trials of the process 
- Note that the spectral density is double-sided since it is 

based on the Fourier Transform (which is defined for both 
positive and negative frequencies)
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Autocorrelation and Spectral Density (Continuous-Time)

 Assume a zero mean, stationary random process x(t):
- The autocorrelation of x(t) is defined as:

 Note that

- The power spectral density of random process x(t) is 
defined as

 Again, the power spectral density corresponds to the 
Fourier Transform of the autocorrelation function of the 
random process x(t)
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Rxx(τ) = E(x(t) · x(t+ τ))

Sx(f) =

Z ∞

τ=−∞
Rxx(τ )e

−j2πfτdτ

Rxx(0) = E(x
2(t)) = σ2x
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White Random Process (Continuous-Time)

 Assume a zero mean, stationary random process x(t):
- Assuming  that the samples of a random process, x(t), are 

independent of each other, this implies

 Where (t) is known as the delta function with properties:

- The power spectral density of x(t) is then:

 As with a discrete-time white process, a continuous-time 
white process has flat spectral density across all frequencies

 Note that the variance of a white process is actually infinite
 Practical “white noise” is bandlimited and has finite variance
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Rxx(τ) = E(x(t)x(t+ τ )) = Noδ(t)

Sx(f) =

Z ∞

τ=−∞
Rxx(τ)e

−j2πfτdτ = No

δ(t) = 0 for t 6= 0,
Z ∞

−∞
δ(t)dt = 1
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Spectral Density of a White Process (Continuous-Time)

 As with a discrete-time, white process, the spectral 
density of a continuous-time, white process is well 
defined
- It is flat with frequency
- For analog circuits, units of No are V2/Hz or A2/Hz
- It is double-sided, meaning that it is defined for both 

positive and negative frequencies

11

t

Noise(t)  (Trial 1)

f

No

Spectral Density of Noise(t)

0

0



M.H. Perrott

Spectral Density Calculations Involving Filtering

 Assuming an input random process x(t) is fed into a linear, 
time-invariant filter H(s), the resulting power spectral 
density of the output random process y(t) is calculated as:

- Note that filtering a white random process leads to a new 
random process that is no longer white
 The output spectral density is no longer flat across frequency
 Different output samples in time are no longer independent 12

Sx(f)

H(s)
x(t) y(t)

f
0 H(f)

f
0 f1 f2-f1-f2

2

Sy(f)

f
0 f1 f2-f1-f2

No

4No

Sy(f) = |H(f)|2 Sx(f)
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Spectral Density Calculations Involving Power

 The power (i.e., variance) of a zero mean random process 
corresponds to the integration of its power spectral density

- Note that we can consider the power in certain frequency 
bands by changing the value of f1 and f2- In the above example:
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Sx(f)

H(s)
x(t) y(t)

f
0 H(f)

f
0 f1 f2-f1-f2

2

Sy(f)

f
0 f1 f2-f1-f2

4No
No

Py = σ2y = Ryy(0) =

Z ∞

−∞
Sy(f)df =

Z −f1

−f2
Sy(f) +

Z f2

f1

Sy(f)

Py = 4No · 2(f2 − f1)
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Double-Sided Versus Single-Sided Spectral Densities

 It turns out that power spectral densities are always 
symmetric about positive and negative frequencies

 Single-sided spectral densities offer a short cut in which 
only the positive frequencies are drawn
- In order to conserve power, the spectral density magnitude 

is doubled
- For the above example: 
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Sx(f)

H(s)
x(t) y(t)

f
0 H(f)

f
0 f1 f2

2

Sy(f)

f
0 f1 f2

8No
2No

⇒ Py = 8No · (f2 − f1)
We will use only single-sided spectral densities in this class
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Noise in Resistors

 Corresponds to white noise (i.e., thermal noise) in 
terms of either voltage or current

- Circuit designers like to use the above notation in which 
vn

2 and in2 represent power in a given bandwidth f in 
units of Volts2 or Amps2, respectively

- k is Boltzmann’s constant:
- T is temperature (in Kelvins)

 Usually assume room temperature of 27 degrees Celsius

RR

vn

R in
2

2

v2n = 4kTR∆f i2n = 4kT
1

R
∆f

k = 1.38× 10−23J/K

⇒ T = 300K

i2nv2n
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Noise In Inductors and Capacitors

 Ideal capacitors and inductors have no noise!

 In practice, however, they will have parasitic resistance
- Induces noise
- Parameterized by adding resistances in parallel/series 

with inductor/capacitor
 Include parasitic resistor noise sources

LC
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Noise in CMOS Transistors (Assumed in Saturation)

 Modeling of noise in transistors includes several noise 
sources
- Drain noise

 Thermal and 1/f – influenced by transistor size and bias
- Gate noise

 Induced from channel – influenced by transistor size and bias
 Caused by routing resistance to gate (including resistance of 

polysilicon gate)
 Can be made negligible with proper layout such as fingering of 

devices

ID

G
D

S

Drain Noise (Thermal and 1/f)

Gate Noise (Induced and Routing Parasitic)

Transistor Noise Sources

We will ignore gate noise in this class
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Drain Noise – Thermal  (Assume Device in Saturation) 

 Thermally agitated carriers in the 
channel cause a randomly varying 
current

-  is called excess noise factor 
 = 2/3 in long channel
 = 2 to 3 (or higher!) in short 

channel MOS devices
- gdso will be discussed shortly 

ind

f

4kTγgdso

2

Δf

S D

GVGS

VD>ΔV

ind

(Note: gdso = gm/α)

i2nd

¯̄̄̄
th
= 4kTγgdso∆f
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Drain Noise – 1/f  (Assume Device in Saturation)

ind

f

4kTγgdso

2

Δf

drain
1/f noise

drain thermal noise

1/f noise
corner frequency

 Traps at channel/oxide interface 
randomly capture/release carriers

- Parameterized by Kf

 Kf provided by fab
 Sometimes Kf of PMOS << Kf of 

NMOS due to buried channel

S D

GVGS

VD>ΔV

ind

- To minimize: want large area (high WL)
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Drain-Source Conductance:  gdso

 gdso is defined as channel resistance with Vds=0
- Transistor in triode, so that 

- Ideally equals gm, but effects such as velocity saturation 
can cause gdso to be different than gm

⇒ gdso =
dId
dVds

¯̄̄̄
¯
Vds=0

= μnCox
W

L
(Vgs − VT )
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Plot of gm and gds versus Vgs for 0.18 NMOS Device
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 For Vgs bias voltages around 1.2 V: α =
gm

gdso
≈ 1

2

M1
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Vgs

W
L = 1.8μ

0.18μ

gdso
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Plot of gm and gds versus Idens for 0.18 NMOS Device
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RS

RG

RD

RD

vgs

vs

gmvgs

ID

Cgs ind

RG
vnG

RS

vnD

vnS

Vin

Vout

2

2

2

2

rogmbvs

Key Noise Sources for Noise Analysis

v2nS = 4kTRS∆f

v2nD = 4kTRD∆fv2nG = 4kTRG∆f

i2nd = 4kTγgdso∆f +
Kf

f

g2m
WLC2ox

∆f Transistor drain noise:

Thermal noise 1/f noise
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Useful References on MOSFET Noise

 B. Wang et. al., “MOSFET Thermal Noise Modeling for 
Analog Integrated Circuits”, JSSC, July 1994  

 Jung-Suk Goo, “High Frequency Noise in CMOS Low 
Noise Amplifiers”, PhD Thesis, Stanford University,  
August 2001
- http://www-tcad.stanford.edu/tcad/pubs/theses/goo.pdf

 Jung-Suk Goo et. al., “The Equivalence of van der Ziel
and BSIM4 Models in Modeling the Induced Gate Noise 
of MOSFETS”,  IEDM 2000, 35.2.1-35.2.4 

 Todd Sepke, “Investigation of Noise Sources in Scaled 
CMOS Field-Effect Transistors”, MS Thesis, MIT, June 
2002
- http://www-mtl.mit.edu/wpmu/sodini/theses/
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Input Referral of Noise

 It is often convenient to input refer the impact of noise 
when performing noise analysis in circuits
- To justify the above, recall that filtering a random process 

x(t) leads to an output random process y(t) such that

 For the case where H(f) = K (i.e., a simple gain factor):

25

Vin VoutK

vnS
2

Vin VoutK

vnS
21

K2

Sy(f) = |H(f)|2 Sx(f)

⇒ Sy(f) = |K|2Sx(f) ⇒ Sx(f) =
1

|K|2Sy(f)
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RD

ind

vnD

Vin

Vout

2

2

RD

ind vnDVin

Vout

221
gm

2
1

((RD||ro)gm)2

RD

ind vnDVin

Vout

221
gm

2
1

((RD||ro)gm)2

Input-refer the
noise sources
(apply superposition)

Can directly add the
voltage noise sources
(in power, not voltage) 
if they are uncorrelated

Example:  Common Source Amplifier

 Note that we will 
always assume that 
different circuit 
elements produce 
uncorrelated noise
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Summary

 Power spectral density provides a rigorous approach 
to describing the frequency domain behavior of the 
ensemble behavior of stationary, ergodic (zero mean) 
random processes
- Key concepts:  Expectation, Autocorrelation, Fourier 

Transform, Correlation, Filtering
 Circuit designers like the following “notation”

- Single-sided rather than double-sided spectra
- Voltage and current noise power denoted as      and

 Key noise properties of circuit elements
- Resistor:   thermal noise (white noise)
- MOS transistor:  thermal + 1/f noise

 Useful analysis tool:  input referral of noise sources
- Assumption of uncorrelated noise from different 

elements allows their power (i.e., variance) to be added

i2nv2n


