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Recall Frequency Domain View of Random Process

It is valid to take
the FFT of a
sequence from
a given trial

However, notice
that the FFT
result changes
across trials

= Fourier
Transform of a
random
process is
undefined !

= We need a
new tool
called spectral
analysis
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Expectation of a Random Variable

" The expectation of random variable y is defined as

E(y) = / ) yfy(y)dy

— 0

= We see that:

E(y) = /OO yfy(y)dy = iy

E((y — py)?) = /oo (y — 1y)* fy(y)dy = o,

— 00

~ In the case where p, =0 (i.e., the mean of y is 0)
B(y®) = B((y - my)?) = 03

= E(y?) is called the second moment of random variable y



Independence of Random Variables

" Consider two random variables x and y
= x and y are said to be independent if and only if

f(z,y) = f(z)f(y)

= Where f(X,y) is the joint probability distribution of x and y
= which implies

E(zy) =/OO wyf(w,y)dwdyzf zf(z)dx /O:O yf(x)dy

— 00 — 00 —
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= E(zy) = E(z)E(y)

= The above relationship is also true under a less strict
condition called linear independence

» [f x and y are zero mean, then E(xy) = 0 implies that x
and y are uncorrelated



Autocorrelation and Spectral Density (Discrete-Time)

" Assume a zero mean, stationary random process x[n]:
= The autocorrelation of x[n] is defined as:

Reo[m| = E(z[n] - z[n +mj)

= Note that:
Ry [0] = E(2°[n]) = o}
= The power spectral density of random process x[n] is
defined as o6
Se(N\) = Z Rz [m]e 72mm

= Note that 4 =T, where fis frequency (in Hz) and T is the
sample period of the process (in units of seconds)

= Power spectral density of x[n] is essentially the (Discrete-
Time) Fourier Transform of the autocorrelation of x[n]



Implications of Independence (Discrete-Time)

" |f the samples of a zero mean random process, x[n],
are independent of each other, this implies

R.:\m|] = E(x|n]z\n + m])

_ [ E(@?@) =2, m =0

| E(zn)E(n+m]) =0, m=#0

" The corresponding power spectral density is then
calculated as

= Sz(A)
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= This is a known as a white random process, whose
spectral density is flat across all frequencies



Understanding White Random Processes

------------------------------------------

Histogram of 100 samples

LIl Mm sample ;

Histogram of 1,000 samples

noise[n] (Trial = 1)

" |Independence between
samples implies that previous
samples provide no benefit in
trying to predict the value of
the current sample

" For Gaussian white processes,
the best we can do Is use the
Gaussian PDF to determine the '
probability of a sample being
within a given range

= Variance of the process is a
key parameter




Spectral Density of a White Process (Discrete-Time)
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" The spectral density of a white process is well defined

= This is in contrast to the FFT of a white process, which varies
between different trials of the process

= Note that the spectral density is double-sided since it is
based on the Fourier Transform (which is defined for both
positive and negative frequencies)




Autocorrelation and Spectral Density (Continuous-Time)

" Assume a zero mean, stationary random process Xx(t):
= The autocorrelation of x(t) is defined as:

Ryo(7) = E(2(t) - 2(t + 7))
= Note that
R.2(0) = E(z%(t)) = o2

i

= The power spectral density of random process x(t) is
defined as

S.(f) = /OO Ryo(T)e ™ 72™ 7 dr

=—00

= Again, the power spectral density corresponds to the
Fourier Transform of the autocorrelation function of the
random process x(t)



White Random Process (Continuous-Time)

" Assume a zero mean, stationary random process x(t):

= Assuming that the samples of a random process, x(t), are
Independent of each other, this implies

Rii(7) = E(x(t)x(t+ 7)) = N,6(t)

= Where §(t) is known as the delta function with properties:
o

6(t) =0 fort # 0, / d(t)dt =1

— OO

= The power spectral density of x(t) is then:

S.(f) = / Ryn(T)e 2™/ Tdr = N,

=—00
= As with a discrete-time white process, a continuous-time
white process has flat spectral density across all frequencies

= Note that the variance of a white process is actually infinite
= Practical “white noise” is bandlimited and has finite variance
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Spectral Density of a White Process (Continuous-Time)

Noise(t) (Trial 1) Spectral Density of Noise(t)
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" As with a discrete-time, white process, the spectral
density of a continuous-time, white process is well
defined

= It is flat with frequency
= For analog circuits, units of N, are V?/Hz or A%/Hz

= It is double-sided, meaning that it is defined for both
positive and negative frequencies

0
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Spectral Density Calculations Involving Filtering

Sx(f) Sy(f)

N ><(t)_> H(s) _}y(t) 4No|:| 1 I:I
f f

fo-f1 0 f1 fp

f2-f1 0 4 2
" Assuming an input random process x(t) is fed into a linear,
time-invariant filter H(s), the resulting power spectral
density of the output random process y(t) is calculated as:

Sy(f) = |H(f)] Su(f)

= Note that filtering a white random process leads to a new
random process that is no longer white

* The output spectral density is no longer flat across frequency
= Different output samples in time are no longer independent
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Spectral Density Calculations Involving Power

Sx(f) Sy(f)

. X(t)_> H(s) _}y(t) 4N0I + I
f f

fo-f1 0 f1 fp

fo-f1 0 f1 fo

" The power (i.e., variance) of a zero mean random process
corresponds to the integration of its power spectral density

P, =0} =R, (0) = O; s,(7)dr = | ff s, + | f S,(f)

= Note that we can consider the power in certain frequency
bands by changing the value of f; and f,

= In the above example:
P, =4N, - 2(fa — f1)

13



Double-Sided Versus Single-Sided Spectral Densities

Sx(f) Sy(f)
X(t) y(t) 8N, T
V| — —| H(s) = I
0 f RO 0 f f
2“~ D
0 f1 f2

" |t turns out that power spectral densities are always
symmetric about positive and negative frequencies

" Single-sided spectral densities offer a short cut in which
only the positive frequencies are drawn

= In order to conserve power, the spectral density magnitude
Is doubled

= For the above example: = P, =8N, (f2 — f1)

We will use only single-sided spectral densities in this class ‘
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Noise In Resistors

" Corresponds to white noise (i.e., thermal noise) in
terms of either voltage or current

v2
Vn

— 1
v2 = 4kTRAf i2 = 4kT A f

= Circuit designers like to use the above notation in which
w2 and 42 represent power in a given bandwidth Af in
units of Volts? or Amps?, respectively

= k is Boltzmann's constant: k= 1.38 x 107°3J/K
= Tis temperature (in Kelvins)

» Usually assume room temperature of 27 degrees Celsius
= 1T'=300K
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Noise In Inductors and Capacitors

" |deal capacitors and inductors have no noise!

" |n practice, however, they will have parasitic resistance

= Induces noise

= Parameterized by adding resistances in parallel/series
with inductor/capacitor

* Include parasitic resistor noise sources
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Noise in CMOS Transistors (Assumed in Saturation)

lol Transistor Noise Sources

D
L| , ‘ Drain Noise (Thermal and 1/f)

S Gate Noise (Induced and Routing Parasitic)

" Modeling of noise in transistors includes several noise
sources

= Drain noise
» Thermal and 1/f — influenced by transistor size and bias
= Gate noise
* Induced from channel — influenced by transistor size and bias

= Caused by routing resistance to gate (including resistance of
polysilicon gate)
= Can be made negligible with proper layout such as fingering of
devices

We will ignore gate noise in this class

17



Drain Noise — Thermal (Assume Device in Saturation)

" Thermally agitated carriers in the
channel cause arandomly varying —

current ___ i
tnd h = 4kTvggqs0Af
= vis called excess noise factor

4kTyQ4so

= = 2/3 in long channel

= =2 to 3 (or higher!) in short
channel MOS devices

= Ugso Will be discussed shortly (Note: gg.p = gm/)




Drain Noise — 1/f (Assume Device In

Saturation)

" Traps at channel/oxide interface
randomly capture/release carriers  _
_ 2
i?%d - K g3, ' AF Af
1/f  f WLC
= Parameterized by K;
= K provided by fab

4kTyQ4so

drain
1/f noise
drain thermal noise

N

= Sometimes K; of PMOS << K; of
NMOS due to buried channel

= To minimize: want large area (high WL)

1
1/f noise
corner frequency
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Drain-Source Conductance: gy,

" Q4. IS defined as channel resistance with V4 ,=0
= Transistor in triode, so that

1% V2

dI
AV,

%%
— MnCoa?—(Vgs — Vr)
V@=O L

= | 9dso =

= ldeally equals g,,, but effects such as velocity saturation
can cause gy, to be different than g,



Plot of g, and g4, versus Vg for 0.18u NMOS Device
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" For Vs bias voltages around 1.2 V: a= —

ddso 2
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Plot of g,, and g4, versus |y, for 0.18u NMOS Device

Transconductances g, and g, versus Current Density
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Key Noise Sources for Noise Analysis

__ RS ——

2 2
Voo = = 4kTRoAf — D AKTRp A f
nD
e Ve L1
|+ o ®
+ —
g VQS::Cgs gmvgs<> gmbvs<> rog <l> In%
IDl Rp =
RG VOUt -------------- :I_---}---; --------------------------------
VnS -
y Vs nS = 4kTRgAf
in R
Transistor drain noise: %: 4kTvgqs0Df Ky i s Af
f WLCO$
Thermal noise 1/f noise
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Useful References on MOSFET Noise

" B.Wang et. al., “MOSFET Thermal Noise Modeling for
Analog Integrated Circuits”, JSSC, July 1994

" Jung-Suk Goo, “High Frequency Noise in CMOS Low
Noise Amplifiers”, PhD Thesis, Stanford University,
August 2001

" Jung-Suk Goo et. al., “The Equivalence of van der Ziel
and BSIM4 Models in Modeling the Induced Gate Noise
of MOSFETS”, IEDM 2000, 35.2.1-35.2.4

" Todd Sepke, “Investigation of Noise Sources in Scaled
CMOS Field-Effect Transistors”, MS Thesis, MIT, June
2002
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Input Referral of Noise

Vin —» Vout # Vin b_’vout
+ _2 L 2 +
T ) Vps K2 Vs (X

" |tis often convenient to input refer the impact of noise
when performing noise analysis in circuits

= To justify the above, recall that filtering a random process
X(t) leads to an output random process y(t) such that

Sy(f) = [H(f)]* Su(f)

* For the case where H(f) = K (i.e., a simple gain factor):

= SN = IKES:(f) = Sulf) = Su(0)
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Example: Common Source Amplifier

Input-refer the
Rp noise sources gRD
—_— (apply superposition)
2
VnD
Vot ._Vout
I 2 () () I
||__, in ©, ) |
Vin V, L I_2 1 V_2
" gm2 ™ (Rollro)gm)? ™
Can directly add the
voltage noise sources
(in power, not voltage) Rp
® Note that we will ifthey are uncorrelated
V
always assume that P | out
different circuit \> |
elements produce A inrgd + — 1 —v2
uncorrelated noise Im (Rollro)gm) 1
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Summary

Power spectral density provides a rigorous approach
to describing the frequency domain behavior of the
ensemble behavior of stationary, ergodic (zero mean)
random processes

= Key concepts: Expectation, Autocorrelation, Fourier
Transform, Correlation, Filtering

Circuit designers like the following “notation”

= Single-sided rather than double-sided spectra

= Voltage and current noise power denoted as E and g
Key noise properties of circuit elements

= Resistor: thermal noise (white noise)

= MOS transistor: thermal + 1/f noise
Useful analysis tool: input referral of noise sources

= Assumption of uncorrelated noise from different
elements allows their power (i.e., variance) to be added
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