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Continuous-Time Versus Discrete-Time Signals

Real World Signal Samples of Real World Signal
x(t) x[n]
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Real world signals, such as acoustic signals from speakers
and RF signals from cell phones, are continuous-time in
nature

Digital processing of signals requires samples of real world
signhals, which yields discrete-time signals

Analog circuits are used to sample and digitize real world
sighals for use by digital processors

It is useful to study discrete-time signals when examining
the issue of noise
= Many insights can be applied back to continuous-time signals




Definition of Mean, Power, and Energy

x[n]
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" DC average or mean, u,, is defined as

1]\/T—l
M$2—2$n
k=0

" Power, P,, and energy E, ar_e defined as
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= For many systems we often remove the mean since it is
often irrelevant in terms of information:
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Definition of Signal-to-Noise Ratio
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® Signal-to-Noise ratio (SNR) indicates the relative impact
of noise on system performance

Psina,
SNR = —29no!

Pnoise
" We often like to use units of dB to express SNR:
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SNR Example
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" Scaling the gain factor A leads to
different SNR values

= Lower A results in lower SNR

= Signal quality steadily degrades
with lower SNR




Analysis of Random Processes

®" Random processes, such as noise,
take on different sequences for
different trials
= Think of trials as different

measurement intervals from the
same experimental setup

" For agiven trial, we can apply our
standard analysis tools and metrics

= Fourier transform, mean and power
calculations, etc...

" When trying to analyze the
ensemble (i.e. all trials) of possible
outcomes, we find ourselves In
need of new tools and metrics
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Tools and Metrics for Random Processes

" Assume that random processes we will deal with have
the properties of being stationary and ergodic

= True for noise in many practical systems
= Greatly simplifies analysis

" Examine in both time and frequency domains
= Time domain

* Introduce the concept of a probability density function (PDF)
to characterize behavior of signals at a given sample time

= Use PDF to calculate mean and variance
= Similar to mean and power of non-random signals
= Frequency domain
= We will discuss a more proper framework in the next lecture

= For now, we will simply use Fourier analysis (i.e., Fast
Fourier Transform, FFT) on signals from individual trials



Stationary and Ergodic Random Processes

noise[n][trial=1]

" Stationary
= Statistical behavior is
iIndependent of shifts in : n
time in a given trial: l

* Implies noisel[k] is
statistically 4

---------------

indistinguishable  :noise[n=K]trial]
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noise[n][trial=2]

---------------

can be performed at one 'Y
sample time (i.e., n=k)

across different trials, or

across different sample

times of the same trial

with no change in the

statistical result

noise[n][trial=3]
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Examples

" Non-Stationary " Stationary, but Non-Ergodic

noise[n] (Trial 1) noise[n] (Trial 1)

noise[n] (Trial 2)
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noise[n] (Trial 3)




Experiment to see Statistical Distribution

------------------------------------------

Histogram of 100 samples

5 Ll | sample :

. E Histogram of 1,000 samples

noise[n] (Trial = 1)

" Create histograms of
sample values from trials
of increasing lengths

" Assumption of stationarity
Implies histogram should
converge to a shape
known as a probability
density function (PDF)




Formalizing the PDF Concept

= Define x as a Histogram
random variable
whose PDF has the
same shape as the
histogram we just
obtained

® Denote PDF of x as

fy(X)
= Scale fy(x) such

that its overall
areais 1

i/_ifx(ﬁ)zl \

This shape is referred
to as a Gaussian PDF

sample
value
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Formalizing Probability

" The probability that random variable x takes on a value in
the range of x, to x, is calculated from the PDF of x as:

Prob(z; < x < x9) = / fx(z)dx

 Fx(x)

PDF

X1 X2

= Note that probability values are always in therange of 0to 1

= Higher probability values imply greater likelihood that the
event will occur
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Example Probability Calculation

:fx(x) This shape is

| referred to as a
112 —r / uniform PDF

0 0510 2 X

" Verify that overall area is 1:

/O:Ofx(:n)dac—/;o.f)dm = |1

" Probability that x takes on a value between 0.5 and 1.0:

1.0

Prob(0.5 <z <£1.0) = / 0.5dx =10.25
0.5
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Examination of Sample Value Distribution

noise[n] _n

noise[k] = x

" Assumption of ergodicity implies the value occurring at a
given time sample, noise[k], across many different trials
has the same PDF as estimated in our previous
experiment of many time samples and one trial

" We can model noise[k] as the random variable x
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Probability Calculation

noise[n]

noise[k] =

" |n agiven trial, the probability that noise[k] takes on a
value in the range of x, to X, is computed as

Prob(z; < x < x9) = / fx(z)dx
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Mean and Variance

‘ X
Hx
®" The mean of random variable x, p,, corresponds to its
average value

- Computed as  p; = / rfx(x)dx

— OO

" The variance of random variable x, o2, gives an
Indication of its variability

= Computed as 00
| @ mpx(e)ds

— OO

= Similar to power of a signal
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Visualizing Mean and Variance from a PDF

Changes in mean of x Changes in variance of x
() ' Fx(x)

Smaller : Smaller
Mean ' Variance

 Tx(x)  Tx(x)
' ! Larger :
. Variance :
X A X

0

HUx
" Changes in mean shift the center of mass of PDF

" Changes in variance narrow or broaden the PDF
= Note that area of PDF must always remain equal to one
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Example Mean and Variance Calculation

 Fx(x)

1/2

0 2
" Mean:
o0 2 1 1 |7
Ly :f :UfX(:U)d.:U:/ r-dr = ~z°
— 00 0 2 0
" \ariance:
o0 2
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Frequency Domain View of Random Process

It is valid to take
the FFT of a
sequence from
a given trial

However, notice
that the FFT
result changes
across trials

= Fourier
Transform of a
random
process is
undefined !

= We need a
new tool
called spectral
analysis

noise[n] (Trial 1)

'noise[n] (Trial 2)

S —

. hoise[n] (Trial 3)

Magnitude of fft of noise[n] (Trial 1)

-

Magnitude of fft of noise[n] (Trial 2)

I : A
-0.5 0 0.5

Magnitude of fft of noise[n] (Trial 3)

0.5 0 0.5
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White Noise

White Noise

Magnitude of fft of noise[n]

05 0 0.5

" When the FFT result looks relatively flat, we refer to the
random process as being white

= Note: this type of noise source is often used for calibration
of advanced stereo systems
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Shaped Noise

White Noise Shaped Noise
Magnitude of fft of noise[n] Magnitude of fft of filtered noise[n]
= : LA | : FA
-0.5 0 0.5 -0.5 0 0.5
Highpass
noise[n] filtered noise[n]

—> H(ejznfx) >

" Shaped noise occurs when white noise is sent into a filter

= FFT of shaped noise will have frequency content according
to the type of filter

= Example: highpass filter yields shaped noise with only high
frequency content
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Summary

" Discrete-time processes provide a useful context for
studying the properties of noise

= Analog circuits often convert real world (continuous-
time) signals into discrete-time signals
" Signal-to-noise ratio is a key metric when examining
the impact of noise on a system

" Noise is best characterized by using tools provided by
the study of random processes

= We will assume all noise processes we deal with are
stationary and ergodic

= Key metrics are mean and variance

= Frequency analysis using direct application of Fourier
Transforms is fine for one trial, but not valid when
considering the ensemble of a random process

We will consider spectral analysis for continuous-time signals
In the next lecture
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