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Continuous-Time Versus Discrete-Time Signals

 Real world signals, such as acoustic signals from speakers 
and RF signals from cell phones, are continuous-time in 
nature

 Digital processing of signals requires samples of real world 
signals, which yields discrete-time signals

 Analog circuits are used to sample and digitize real world 
signals for use by digital processors

 It is useful to study discrete-time signals when examining 
the issue of noise
- Many insights can be applied back to continuous-time signals
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 DC average or mean, x, is defined as

 Power, Px, and energy, Ex, are defined as

- For many systems, we often remove the mean since it is 
often irrelevant in terms of information:

Definition of Mean, Power, and Energy
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Definition of Signal-to-Noise Ratio

 Signal-to-Noise ratio (SNR) indicates the relative impact 
of noise on system performance

 We often like to use units of dB to express SNR:
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SNR = 0.4 dB 

SNR Example

 Scaling the gain factor A leads to 
different SNR values
- Lower A results in lower SNR
- Signal quality steadily degrades 

with lower SNR
5



M.H. Perrott

Analysis of Random Processes

 Random processes, such as noise, 
take on different sequences for 
different trials
- Think of trials as different 

measurement intervals from the 
same experimental setup

 For a given trial, we can apply our 
standard analysis tools and metrics
- Fourier transform, mean and power 

calculations, etc…
 When trying to analyze the 

ensemble (i.e. all trials) of possible 
outcomes, we find ourselves in 
need of new tools and metrics
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Tools and Metrics for Random Processes

 Assume that random processes we will deal with have 
the properties of being stationary and ergodic
- True for noise in many practical systems 
- Greatly simplifies analysis

 Examine in both time and frequency domains
- Time domain

 Introduce the concept of a probability density function (PDF) 
to characterize behavior of signals at a given sample time

 Use PDF to calculate mean and variance
 Similar to mean and power of non-random signals

- Frequency domain
 We will discuss a more proper framework in the next lecture
 For now, we will simply use Fourier analysis (i.e., Fast 

Fourier Transform, FFT) on signals from individual trials
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 Stationary
- Statistical behavior is 

independent of shifts in 
time in a given trial:
 Implies noise[k] is 

statistically 
indistinguishable     
from noise[k+N]

 Ergodic
- Statistical sampling

can be performed at one 
sample time (i.e., n=k) 
across different trials, or
across different sample 
times of the same trial 
with no change in the 
statistical result

Stationary and Ergodic Random Processes

n

n

n

noise[n][trial=1]

noise[n][trial=2]

noise[n][trial=3]

n=k

noise[n=k][trial]

trial

8



M.H. Perrott

Examples

 Non-Stationary
noise[n]   (Trial 1)
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n

noise[n]  (Trial = 1)

sample
value

Histogram of 100 samples

Histogram of 1,000 samples

Histogram of 10,000 samples

Histogram of 1,000,000 samples

sample
value

sample
value

sample
value

Experiment to see Statistical Distribution

 Create histograms of 
sample values from trials 
of increasing lengths

 Assumption of stationarity
implies histogram should 
converge to a shape 
known as a probability 
density function (PDF)
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Formalizing the PDF Concept

sample
value
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Histogram
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Area = 1

This shape is referred
to as a Gaussian PDF
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 Define x as a 
random variable 
whose PDF has the 
same shape as the 
histogram we just 
obtained

 Denote PDF of x as 
fX(x)
- Scale fX(x) such 

that its overall 
area is 1
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Formalizing Probability

 The probability that random variable x takes on a value in 
the range of x1 to x2 is calculated from the PDF of x as:

- Note that probability values are always in the range of 0 to 1
- Higher probability values imply greater likelihood that the 

event will occur
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Example Probability Calculation

 Verify that overall area is 1:

 Probability that x takes on a value between 0.5 and 1.0:
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This shape is 
referred to as a 

uniform PDF
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Examination of Sample Value Distribution

 Assumption of ergodicity implies the value occurring at a 
given time sample, noise[k], across many different trials 
has the same PDF as estimated in our previous 
experiment of many time samples and one trial

 We can model noise[k] as the random variable x
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Probability Calculation

 In a given trial, the probability that noise[k] takes on a 
value in the range of x1 to x2 is computed as
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Mean and Variance

 The mean of random variable x, x, corresponds to its 
average value
- Computed as

 The variance of random variable x, x
2, gives an 

indication of its variability
- Computed as

- Similar to power of a signal
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Visualizing Mean and Variance from a PDF

 Changes in mean shift the center of mass of PDF
 Changes in variance narrow or broaden the PDF

- Note that area of PDF must always remain equal to one 
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Example Mean and Variance Calculation

 Mean:

 Variance:
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Frequency Domain View of Random Process

 It is valid to take 
the FFT of a 
sequence from 
a given trial

 However, notice 
that the FFT 
result changes 
across trials
- Fourier 

Transform of a 
random 
process is 
undefined !

- We need a 
new tool 
called spectral 
analysis
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White Noise

 When the FFT result looks relatively flat, we refer to the 
random process as being white
- Note: this type of noise source is often used for calibration 

of advanced stereo systems
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Shaped Noise

 Shaped noise occurs when white noise is sent into a filter
- FFT of shaped noise will have frequency content according 

to the type of filter
 Example:  highpass filter yields shaped noise with only high 

frequency content
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Summary

 Discrete-time processes provide a useful context for 
studying the properties of noise
- Analog circuits often convert real world (continuous-

time) signals into discrete-time signals
 Signal-to-noise ratio is a key metric when examining 

the impact of noise on a system
 Noise is best characterized by using tools provided by 

the study of random processes
- We will assume all noise processes we deal with are 

stationary and ergodic
- Key metrics are mean and variance
- Frequency analysis using direct application of Fourier 

Transforms is fine for one trial, but not valid when 
considering the ensemble of a random process

We will consider spectral analysis for continuous-time signals
in the next lecture


